DOI QR코드

DOI QR Code

Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation

금속 나노 촉매를 활용한 선택적 알코올 산화 반응

  • Hussain, Muhammad Asif (Department of Chemical Engineering, Kangwon National University) ;
  • Joseph, Nyanzi (Department of Chemical Engineering, Kangwon National University) ;
  • Kang, Onyu (Department of Chemical Engineering, Kangwon National University) ;
  • Cho, Young-Hun (Department of Chemical Engineering, Kangwon National University) ;
  • Um, Byung-Hun (Korea Institute of Science and Technology) ;
  • Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
  • Received : 2016.05.17
  • Accepted : 2016.05.25
  • Published : 2016.06.10

Abstract

This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.

본 리뷰 논문은 지지화된 또는 고정화된 금속들 중 선택적 알코올 산화 반응에 적용된 나노 크기의 여러 금속 촉매들에 대해 집중적으로 서술한다. 금속 나노 촉매들은 넓은 표면적을 지닌 고체 지지체들의 표면 위에 금속 나노 입자들의 고른 분산을 통해 얻어진다. 이러한 나노 촉매들은 유기 합성, 연료 전지, 바이오 디젤 생산, 오일 크래킹, 에너지변환 및 저장, 의약, 수처리, 고체 로켓 추진체, 염료 제조 등 학문적 산업적 측면 모두 다양하게 사용될 수 있다. 더욱이, 응용성이 풍부한 중간체들을 생산하는 호기성 알코올 산화 반응에서 금속 나노 재료는 촉매로써 매우 중요하다. 금, 팔라듐, 류테늄, 바나디움 등과 같은 지지화된 금속 나노 촉매들의 알코올 산화 반응은 기존의 화학 당량적 반응과 달리 비용을 경감시키고 부반응물들을 줄임으로써 경제적이고 친환경적이다. 뿐만 아니라, 상온에서 진행된 나노 촉매 알코올 산화 반응에 대해서도 소개된다.

Keywords

References

  1. S. Chaturvedi, P. N. Dave, and N. Shah, Applications of nano-catalyst in new era, J. Saudi Chem. Soc., 16, 307-325 (2012). https://doi.org/10.1016/j.jscs.2011.01.015
  2. S. Chaturvedi and P. N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc., 17, 135-149 (2013). https://doi.org/10.1016/j.jscs.2011.05.009
  3. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025-1102 (2005). https://doi.org/10.1021/cr030063a
  4. A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299, 1688-1691 (2003). https://doi.org/10.1126/science.1083671
  5. B. M. Trost, The atom economy-A search for synthetic efficiency, Science, 1471-1477 (1991).
  6. B. M. Trost, Atom economy-A challenge for organic synthesis: Homogeneous catalysis leads the way, Angew. Chem. Int. Ed., 34, 259-281 (1995). https://doi.org/10.1002/anie.199502591
  7. R. A. Sheldon, Catalysis: The key to waste minimization, J. Chem. Tech. Biotechnol., 68, 381-388 (1997). https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<381::AID-JCTB620>3.0.CO;2-3
  8. R. A. Sheldon and E factors, green chemistry and catalysis: An odyssey, Chem. Commun., 29, 3352-3365 (2008).
  9. J. A. Glaser, Green chemistry with nanocatalysts, Clean Technol. Environ. Policy, 14, 1-8 (2012). https://doi.org/10.1007/s10098-011-0446-1
  10. C. H. Bartholomew and R. J. Farrauto, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons (2011).
  11. N. R. Shiju and V. V. Guliants, Recent developments in catalysis using nanostructured materials, Appl. Catal., A, 356, 1-17 (2009). https://doi.org/10.1016/j.apcata.2008.11.034
  12. J. Fan and Y. Gao, Nanoparticle-supported catalysts and catalytic reactions-A mini-review, J. Exp. Nanosci., 1, 457-475 (2006). https://doi.org/10.1080/17458080601067708
  13. R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004). https://doi.org/10.1021/nl0495256
  14. Y. H. Kim, S. K. Hwang, J. W. Kim, and Y. S. Lee, Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes, Ind. Eng. Chem. Res., 53, 12548-12552 (2014). https://doi.org/10.1021/ie5009794
  15. J. M. G. Carballo, J. Yang, A. Holmen, S. Garcia-Rodriguez, S. Rojas, M. Ojeda, and J. L. G. Fierro, Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis, J. Catal., 284, 102-108 (2011). https://doi.org/10.1016/j.jcat.2011.09.008
  16. B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. R. Rao, K. N. Robertson, and T. S. Cameron, Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 125, 2195-2199 (2003). https://doi.org/10.1021/ja0282691
  17. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
  18. T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Oxidant free alcohol dehydrogenation using a reusable hydrotalcite supported silver nanoparticle catalyst, Angew. Chem., 120, 144-147 (2008). https://doi.org/10.1002/ange.200703161
  19. X. Yang, X. Wang, and J. Qiu, Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets, Appl. Catal. A, 382, 131-137 (2010). https://doi.org/10.1016/j.apcata.2010.04.046
  20. T. Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols, Chem. Commun., 39, 4804-4806 (2008).
  21. L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, and K. N. Fan, $MnO_{2}$ nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C, 112, 6981-6987 (2008). https://doi.org/10.1021/jp711333t
  22. A. J. Plomp, H. Vuori, A. O. I. Krause, K. P. Jong, and J. H. Bitter, Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde, Appl. Catal. A, 351, 9-15 (2008). https://doi.org/10.1016/j.apcata.2008.08.018
  23. R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, Alternative methods for the preparation of gold nanoparticles supported on $TiO_{2}$, J. Phys. Chem. B, 106, 7634-7642 (2002). https://doi.org/10.1021/jp0144810
  24. P. Haider and A. Baiker, Gold supported on Cu-Mg-Al-mixed oxides: Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium, J. Catal., 248, 175-187 (2007). https://doi.org/10.1016/j.jcat.2007.03.007
  25. L. Madler, H. Kammler, R. Mueller, and S. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci., 33, 369-389 (2002). https://doi.org/10.1016/S0021-8502(01)00159-8
  26. M. S. Kwon, N. Kim, C. M. Park, J. S. Lee, K. Y. Kang, and J. Park, Palladium nanoparticles entrapped in aluminum hydroxide: Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation, Org. Lett., 7, 1077-1079 (2005). https://doi.org/10.1021/ol047381w
  27. S. Kim, S. W. Bae, J. S. Lee, and J. Park, Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions, Tetrahedron., 65, 1461-1466 (2009). https://doi.org/10.1016/j.tet.2008.12.005
  28. N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. Carley, L. Prati, and G. J. Hutchings, Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique, Catal. Today, 122, 317-324 (2007). https://doi.org/10.1016/j.cattod.2007.01.002
  29. S. Dahoah, Z. Nairoukh, M. Fanun, M. Schwarze, R. Schomacker, and J. Blum, Decarbonylation of water insoluble carboxaldehydes in aqueous microemulsions by some sol-gel entrapped catalysts, J. Mol. Catal. A: Chem., 380, 90-93 (2013). https://doi.org/10.1016/j.molcata.2013.09.024
  30. Y. Hong, X. Yan, X. Liao, R. Li, S. Xu, L. Xiao, and J. Fan, Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions, Chem. Commun., 50, 9679-9682 (2014). https://doi.org/10.1039/C4CC02685C
  31. S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, and G. A. Somorjai, Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation, Nano Lett., 10, 2709-2713 (2010). https://doi.org/10.1021/nl101700j
  32. Z. Opre, D. Ferri, F. Krumeich, T. Mallat, and A. Baiker, Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite, J. Catal., 241, 287-295 (2006). https://doi.org/10.1016/j.jcat.2006.05.011
  33. S. Seok, M. A. Hussain, K. J. Park, J. W. Kim, and D. H. Kim, Sonochemical synthesis of PdO@ silica as a nanocatalyst for selective aerobic alcohol oxidation, Ultrason. Sonochem., 28, 178-184 (2016). https://doi.org/10.1016/j.ultsonch.2015.07.020
  34. E. Gusta, V. Sundaramurthy, A. Dalai, and J. Adjaye, Hydrotreating of heavy gas oil derived from athabasca bitumen over Co-Mo/$\gamma$-$Al_{2}O_{3}$ catalyst prepared by sonochemical method, Top. Catal., 37, 147-153 (2006). https://doi.org/10.1007/s11244-006-0016-7
  35. D. Srivastava, N. Perkas, A. Gedanken, and I. Felner, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, J. Phys. Chem. B, 106, 1878-1883 (2002). https://doi.org/10.1021/jp015532w
  36. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 (1989). https://doi.org/10.1016/0021-9517(89)90034-1
  37. M. Okumura, S. Tsubota, and M. Haruta, Vital role of moisture in the catalytic activity of supported gold nanoparticles, Angew. Chem. Int. Ed., 43, 2129-2132 (2004). https://doi.org/10.1002/anie.200453796
  38. S. Lee, C. Fan, T. Wu, and S. L. Anderson, CO oxidation on Au n/$TiO_{2}$ catalysts produced by size-selected cluster deposition, J. Am. Chem. Soc., 126, 5682-5683 (2004). https://doi.org/10.1021/ja049436v
  39. L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, and U. Landman, Catalytic CO oxidation by free $Au_{2}^{-}$: Experiment and theory, J. Am. Chem. Soc., 125, 10437-10445 (2003). https://doi.org/10.1021/ja027926m
  40. B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on $Au_{8}$ clusters on MgO, Science, 307, 403-407 (2005). https://doi.org/10.1126/science.1104168
  41. J. Han, Y. Liu, and R. Guo, Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water, Adv. Funct. Mater., 19, 1112-1117 (2009). https://doi.org/10.1002/adfm.200801018
  42. C. Milone, R. Ingoglia, G. Neri, A. Pistone, and S. Galvagno, Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol, Appl. Catal., A, 211, 251-257 (2001). https://doi.org/10.1016/S0926-860X(00)00875-9
  43. S. Carrettin, P. McMorn, P. Johnston, K. Griffin, and G. J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chem. Commun., 7, 696-697 (2002).
  44. C. Milone, R. Ingoglia, A. Pistone, G. Neri, and S. Galvagno, Activity of gold catalysts in the liquid-phase oxidation of o-hydroxybenzyl alcohol, Catal. Lett., 87, 201-209 (2003). https://doi.org/10.1023/A:1023455525556
  45. F. Porta and L. Prati, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: An insight into reaction selectivity, J. Catal., 224, 397-403 (2004). https://doi.org/10.1016/j.jcat.2004.03.009
  46. D. V. Jawale, E. Gravel, V. Geertsen, H. Li, N. Shah, I. N. Namboothiri, and E. Doris, Aerobic oxidation of phenols and related compounds using carbon nanotube-gold nanohybrid catalysts, Chem. Cat. Chem., 6, 719-723 (2014).
  47. B. Karimi and F. K. Esfahani, Gold nanoparticles supported on $Cs_{2}CO_{3}$ as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature, Chem. Commun., 37, 5555-5557 (2009).
  48. B. Karimi and F. K. Esfahani, Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols, Adv. Synth. Catal., 354, 1319-1326 (2012). https://doi.org/10.1002/adsc.201100802
  49. M. Mahyari, A. Shaabani, and Y. Bide, Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: A bifunctional catalyst for the selective aerobic oxidation of alcohols, RSC Adv., 3, 22509-22517 (2013). https://doi.org/10.1039/c3ra44696d
  50. M. A. Hussain, M. Yang, T. J. Lee, J. W. Kim, and B. G. Choi, High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide, J. Colloid Interface Sci., 451, 216-220 (2015). https://doi.org/10.1016/j.jcis.2015.03.062
  51. N. Mizuno and K. Yamaguchi, Selective aerobic oxidations by supported ruthenium hydroxide catalysts, Catal. Today, 132, 18-26 (2008). https://doi.org/10.1016/j.cattod.2007.12.026
  52. K. Yamaguchi, J. W. Kim, J. He, and N. Mizuno, Aerobic alcohol oxidation catalyzed by supported ruthenium hydroxides, J. Catal., 268, 343-349 (2009). https://doi.org/10.1016/j.jcat.2009.10.004
  53. K. Yamaguchi and N. Mizuno, Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina, Chem. Eur. J., 9, 4353-4361 (2003). https://doi.org/10.1002/chem.200304916
  54. M. Kotani, T. Koike, K. Yamaguchi, and N. Mizuno, Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction, Green Chem., 8, 735-741 (2006). https://doi.org/10.1039/b603204d
  55. K. Yamaguchi and N. Mizuno, Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen, Angew. Chem. Int. Ed., 41, 4538-4542 (2002). https://doi.org/10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6
  56. K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000). https://doi.org/10.1021/ja001325i
  57. K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, and K. Kaneda, Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic $\gamma$-$Fe_{2}O_{3}$ nanocrystallites as an efficient oxidation catalyst by molecular oxygen, Chem. Mater., 19, 1249-1256 (2007). https://doi.org/10.1021/cm061388l
  58. K. Ebitani, H.-B. Ji, T. Mizugaki, and K. Kaneda, Highly active trimetallic Ru/$CeO_{2}$/CoO (OH) catalyst for oxidation of alcohols in the presence of molecular oxygen, J. Mol. Catal. A: Chem., 212, 161-170 (2004). https://doi.org/10.1016/j.molcata.2003.10.036
  59. K. Ebitani, K. Motokura, T. Mizugaki, and K. Kaneda, Heterotrimetallic RuMnMn species on a hydrotalcite surface as highly efficient heterogeneous catalysts for liquid phase oxidation of alcohols with molecular oxygen, Angew. Chem., 117, 3489-3492 (2005). https://doi.org/10.1002/ange.200462600
  60. H. Ji, T. Mizugaki, K. Ebitani, and K. Kaneda, Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst, Tetrahedron Lett., 43, 7179-7183 (2002). https://doi.org/10.1016/S0040-4039(02)01678-7
  61. H. B. Ji, K. Ebitani, T. Mizugaki, and K. Kaneda, Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature, Catal. Commun., 3, 511-517 (2002). https://doi.org/10.1016/S1566-7367(02)00194-2
  62. D. I. Enache, D. W. Knight, and G. J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts, Catal. Lett., 103, 43-52 (2005). https://doi.org/10.1007/s10562-005-6501-y
  63. H. Guo, M. Kemell, A. Al-Hunaiti, S. Rautiainen, M. Leskela, and T. Repo, Gold-palladium supported on porous steel fiber matrix: Structured catalyst for benzyl alcohol oxidation and benzyl amine oxidation, Catal. Commun., 12, 1260-1264 (2011). https://doi.org/10.1016/j.catcom.2011.04.025
  64. E. V. Johnston, O. Verho, M. D. Karkas, M. Shakeri, C. W. Tai, P. Palmgren, K. Eriksson, S. Oscarsson, and J. E. Backvall, Highly dispersed palladium nanoparticles on mesocellular foam: An efficient and recyclable heterogeneous catalyst for alcohol oxidation, Chem. Eur. J., 18, 12202-12206 (2012). https://doi.org/10.1002/chem.201202157
  65. B. Karimi, S. Abedi, J. H. Clark, and V. Budarin, Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: The role of mesoporous channels of SBA-15 in Stabilizing palladium nanoparticles, Angew. Chem. Int. Ed., 45, 4776-4779(2006). https://doi.org/10.1002/anie.200504359
  66. V. Polshettiwar and R. S. Varma, Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: A selective and sustainable oxidation protocol with high turnover number, Org. Biomol. Chem., 7, 37-40 (2009). https://doi.org/10.1039/B817669H
  67. T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura, Palladium (II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen, Chem. Commun., 14, 1245-1246 (2000).
  68. U. R. Pillai and E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives, Green Chem., 6, 161-165 (2004). https://doi.org/10.1039/b316414b
  69. Z. Hou, N. Theyssen, A. Brinkmann, K. V. Klementiev, W. Grunert, M. Buhl, W. Schmidt, B. Spliethoff, B. Tesche, and C. Weidenthaler, Supported palladium nanoparticles on hybrid mesoporous silica: Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide, J. Catal., 258, 315-323 (2008). https://doi.org/10.1016/j.jcat.2008.07.002
  70. C. M. Parlett, D. W. Bruce, N. S. Hondow, A. F. Lee, and K. Wilson, Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas, ACS Catal., 1, 636-640 (2011). https://doi.org/10.1021/cs200145n
  71. N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, and L. Prati, Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols, J. Catal., 244, 113-121 (2006). https://doi.org/10.1016/j.jcat.2006.08.019
  72. A. Yoshida, Y. Takahashi, T. Ikeda, K. Azemoto, and S. Naito, Catalytic oxidation of aromatic alcohols and alkylarenes with molecular oxygen over Ir/$TiO_{2}$, Catal. Today, 164, 332-335 (2011). https://doi.org/10.1016/j.cattod.2010.10.093
  73. S. Velusamy, A. Srinivasan, and T. Punniyamurthy, Copper (II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen, Tetrahedron Lett., 47, 923-926 (2006). https://doi.org/10.1016/j.tetlet.2005.11.149
  74. S. G. Babu, P. A. Priyadarsini, and R. Karvembu, Copper on boehmite: A simple, selective, efficient and reusable heterogeneous catalyst for oxidation of alcohols with periodic acid in water at room temperature, Appl. Catal., A, 392, 218-224 (2011). https://doi.org/10.1016/j.apcata.2010.11.012
  75. M. L. Kantam, R. Arundhathi, P. R. Likhar, and D. Damodara, Reusable copper aluminum hydrotalcite/rac BINOL system for room temperature selective aerobic oxidation of alcohols, Adv. Synth. Catal., 351, 2633-2637 (2009). https://doi.org/10.1002/adsc.200900405
  76. P. Gamez, I. W. Arends, R. A. Sheldon, and J. Reedijk, Room temperature aerobic copper-catalysed selective oxidation of primary alcohols to aldehydes, Adv. Synth. Catal., 346, 805-811 (2004). https://doi.org/10.1002/adsc.200404063
  77. G. Sarmah, S. K. Bharadwaj, A. Dewan, A. Gogoi, and U. Bora, An efficient and reusable vanadium based catalytic system for room temperature oxidation of alcohols to aldehydes and ketones, Tetrahedron Lett., 55, 5029-5032 (2014). https://doi.org/10.1016/j.tetlet.2014.07.047
  78. A. Shaabani, S. Keshipour, M. Hamidzad, and M. Seyyedhamzeh, Cobalt (II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols, J. Chem. Sci., 126, 111-115 (2014). https://doi.org/10.1007/s12039-013-0535-2
  79. J. D. Lou and Z.-N. Xu, Selective oxidation of primary alcohols with chromium trioxide under solvent free conditions, Tetrahedron Lett., 43, 6095-6097 (2002). https://doi.org/10.1016/S0040-4039(02)01333-3
  80. R. Sheldon, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes. Elsevier (2012).
  81. X. Yang, X. Wang, C. Liang, W. Su, C. Wang, Z. Feng, C. Li, and J. Qiu, Aerobic oxidation of alcohols over Au/$TiO_{2}$: An insight on the promotion effect of water on the catalytic activity of Au/$TiO_{2}$, Catal. Commun., 9, 2278-2281 (2008). https://doi.org/10.1016/j.catcom.2008.05.021
  82. A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). https://doi.org/10.1002/anie.200500382
  83. J. Hu, L. Chen, K. Zhu, A. Suchopar, and R. Richards, Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica, Catal. Today, 122, 277-283 (2007). https://doi.org/10.1016/j.cattod.2007.01.012
  84. W. Fang, Q. Zhang, J. Chen, W. Deng, and Y. Wang, Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols, Chem. Commun., 46, 1547-1549 (2010). https://doi.org/10.1039/b923047e
  85. D. I. Enache, D. Barker, J. K. Edwards, S. H. Taylor, D. W. Knight, A. F. Carley, and G. J. Hutchings, Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance, Catal. Today, 122, 407-411 (2007). https://doi.org/10.1016/j.cattod.2007.01.003
  86. A. Abad, C. Almela, A. Corma, and H. García, Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts, Tetrahedron., 62, 6666-6672 (2006). https://doi.org/10.1016/j.tet.2006.01.118
  87. N. Kakiuchi, Y. Maeda, T. Nishimura, and S. Uemura, Pd (II)-Hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air, J. Org. Chem., 66, 6620-6625 (2001). https://doi.org/10.1021/jo010338r
  88. D. R. Jensen, J. S. Pugsley, and M. S. Sigman, Palladium-catalyzed enantioselective oxidations of alcohols using molecular oxygen, J. Am. Chem. Soc., 123, 7475-7476 (2001). https://doi.org/10.1021/ja015827n
  89. K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts, J. Am. Chem. Soc., 124, 11572-11573 (2002). https://doi.org/10.1021/ja020444q
  90. R. Ciriminna, S. Campestrini, and M. Pagliaro, FluoRuGel: a versatile catalyst for aerobic alcohol oxidation in supercritical carbon dioxide, Org. Biomol. Chem., 4, 2637-2641 (2006). https://doi.org/10.1039/b604663k
  91. N. Theyssen, Z. Hou, and W. Leitner, Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium, Chem. Eur. J., 12, 3401-3409 (2006). https://doi.org/10.1002/chem.200501385
  92. Z. Hou, N. Theyssen, and W. Leitner, Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide, Green Chem., 9, 127-132 (2007). https://doi.org/10.1039/B606740A
  93. E. Choi, C. Lee, Y. Na, and S. Chang, $[RuCl_{2}(p-cymene)]_{2}$ on carbon: An efficient, selective, reusable, and environmentally versatile heterogeneous catalyst, Org. Lett., 4, 2369-2371 (2002). https://doi.org/10.1021/ol0260977
  94. P. A. Shapley, N. Zhang, J. L. Allen, D. H. Pool, and H.-C. Liang, Selective alcohol oxidation with molecular oxygen catalyzed by Os-Cr and Ru-Cr complexes, J. Am. Chem. Soc., 122, 1079-1091 (2000). https://doi.org/10.1021/ja982171y
  95. A. N. Kharat, P. Pendleton, A. Badalyan, M. Abedini, and M. M. Amini, Oxidation of aldehydes using silica-supported Co (II)-substituted heteropolyacid, J. Mol. Catal. A: Chem., 175, 277-283 (2001). https://doi.org/10.1016/S1381-1169(01)00234-5
  96. S. Murahashi, T. Naota, and N. Hirai, Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes, J. Org. Chem., 58, 7318-7319 (1993). https://doi.org/10.1021/jo00078a002
  97. Z. Opre, J.-D. Grunwaldt, M. Maciejewski, D. Ferri, T. Mallat, and A. Baiker, Promoted Ru-hydroxyapatite: Designed structure for the fast and highly selective oxidation of alcohols with oxygen, J. Catal., 230, 406-419 (2005). https://doi.org/10.1016/j.jcat.2004.12.012
  98. Z. Opre, J.-D. Grunwaldt, T. Mallat, and A. Baiker, Selective oxidation of alcohols with oxygen on Ru-Co-hydroxyapatite: A mechanistic study, J. Mol. Catal. A: Chem., 242, 224-232 (2005). https://doi.org/10.1016/j.molcata.2005.08.012
  99. F. Vocanson, Y. Guo, J. Namy, and H. Kagan, Dioxygen oxidation of alcohols and aldehydes over a cerium dioxide-ruthenium system, Synth. Commun., 28, 2577-2582 (1998). https://doi.org/10.1080/00397919808004826
  100. S. Venkatesan, A. S. Kumar, J.-F. Lee, T.-S. Chan, and J.-M. Zen, Ruthenium-functionalized nickel hydroxide catalyst for highly efficient alcohol oxidations in the presence of molecular oxygen, Chem. Commun., 14, 1912-1914 (2009).
  101. M. Gopiraman, S. Ganesh Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, and I. S. Kim, Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones, J. Phys. Chem. C, 117, 23582-23596 (2013). https://doi.org/10.1021/jp402978q
  102. T. Yasueda, S. Kitamura, N. O. Ikenaga, T. Miyake, and T. Suzuki, Selective oxidation of alcohols with molecular oxygen over $Ru/CaO-ZrO_{2}$ catalyst, J. Mol. Catal. A: Chem., 323, 7-15 (2010). https://doi.org/10.1016/j.molcata.2010.03.018
  103. P. Haider, J.-D. Grunwaldt, R. Seidel, and A. Baiker, Gold supported on Cu-Mg-Al and Cu-Ce mixed oxides: An in situ XANES study on the state of Au during aerobic alcohol oxidation, J. Catal., 250, 313-323 (2007). https://doi.org/10.1016/j.jcat.2007.07.001
  104. J. D. Cosimo, V. Diez, M. Xu, E. Iglesia, and C. Apesteguia, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal., 178, 499-510 (1998). https://doi.org/10.1006/jcat.1998.2161
  105. T. Sato and T. Komanoya, Selective oxidation of alcohols with molecular oxygen catalyzed by $Ru/MnO_{x}/CeO_{2}$ under mild conditions, Catal. Commun., 10, 1095-1098 (2009). https://doi.org/10.1016/j.catcom.2009.01.004
  106. M. J. Schultz, C. C. Park, and M. S. Sigman, A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature, Chem. Commun., 24, 3034-3035 (2002).
  107. L. Wang, J. Zhang, X. Meng, D. Zheng, and F.-S. Xiao, Superior catalytic properties in aerobic oxidation of alcohols over Au nanoparticles supported on layered double hydroxide, Catal. Today, 175, 404-410 (2011). https://doi.org/10.1016/j.cattod.2011.03.040
  108. H. Miyamura, R. Matsubara, Y. Miyazaki, and S. Kobayashi, Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives, Angew. Chem., 119, 4229-4232 (2007). https://doi.org/10.1002/ange.200700080

Cited by

  1. Recyclable Supramolecular Ruthenium Catalyst for the Selective Aerobic Oxidation of Alcohols on Water: Application to Total Synthesis of Brittonin A vol.6, pp.3, 2016, https://doi.org/10.1021/acssuschemeng.7b03448
  2. Porous Anodic Aluminum Oxide as an Efficient Support for Ruthenium-Catalyzed Aerobic Oxidation of Alcohols and Amines vol.58, pp.51, 2016, https://doi.org/10.1021/acs.iecr.9b06054