동적 하네스 체중지지율에 따른 일상생활 동작 시 인체영향평가

Evaluation of Human Body Effects during Activities of Daily Living According to Body Weight Support Rate with Active Harness System

  • 송성미 (전북대학교 헬스케어공학과) ;
  • 유창호 (전북대학교 바이오메디컬공학부) ;
  • 김경 (사단법인 캠틱종합기술원) ;
  • 김재준 (사단법인 캠틱종합기술원) ;
  • 송원경 (국립재활원 재활연구소) ;
  • 홍철운 (전북대학교 바이오메디컬공학부) ;
  • 권대규 (전북대학교 바이오메디컬공학부)
  • 투고 : 2015.11.23
  • 심사 : 2016.01.08
  • 발행 : 2016.02.29

초록

본 연구에서는 다자유도 동적 하네스 시스템을 개발하고 동적 하네스 체중지지에 따른 인체 영향평가를 하고자 한다. 건강한 성인 남성 20명을 대상으로 실험을 진행하였으며 평지보행, 앉기, 서기, 계단 오르기, 계단 내려오기 5가지 일상생활 동작을 수행하였다. 일상생활 동작 수행 시 각 피험자 체중의 0%, 30%, 50%에서의 근육 활성도와 족압 분포를 측정하였다. 근육 측정부위는 대퇴직근, 대퇴이두근, 전경골근, 외측 비복근이다. 하네스 체중지지율 증가에 따라 족압의 평균값은 전체적으로 감소하는 경향을 보였다. 평지보행에서는 체중지지율 증가에 따른 전족부의 압력의 감소폭이 크게 나타났으며 비복근과 대퇴이두근의 활성 감소를 보였다. 앉기 동작에서는 후족부의 족저 압력 감소폭이 크게 나타났으며 체중지지율에 따라 전경골근의 근육 활성이 감소하였다. 계단 내려오기 동작에서는 체중지지율 증가에 따라 전족부의 압력이 크게 감소하였고 대퇴직근의 활성감소가 크게 나타났다. 의자에서 일어나기동작과 계단 오르기 동작에서는 동적 하네스 체중지지효과가 미비하였으며 이는 속도가 건강한 성인 남성의 동작 수행 속도보다 느리기 때문이다. 후속 연구에서는 본 시스템을 개선하기 위한 연구가 지속되어져야 할 것이다.

In this paper, we measured human body signals in order to verify a active harness system that we developed for gait and balance training. The experimental procedure was validated by tests with 20 healthy male subjects. They conducted motions of Activities of Daily Living(ADL)(Normal Walking, Stand-to-Sit, Sit-to-Stand, Stair Walking Up, and Stair Walking Down) according to body weight support rates (0%, 30%, 50% of subjects' body weight). The effectiveness of the active harness system is verified by using the results of foot pressure distribution. In normal walking, the decrease of fore-foot pressure, lateral soleus muscle and biceps femoris muscle were remarkable. The result of stand-to-sit results motion indicated that the rear-foot pressure and tibialis anterior muscle activities exceptionally decreased according to body weight support. The stair walking down show the marked drop of fore-foot pressure and rectus femoris muscle activities. The sit-to-stand and stair walking up activities were inadequate about the effect of body weight support because the velocity of body weight support system was slower than male's activity.

키워드

참고문헌

  1. D.T. Wade, V.A. Wood, A. Heller, "Walking after stroke: measurement and recovery over the first three months", Scandinavian J. Rehabilitation medicine, vol. 19, no. 25-30, pp. 25-30, 1987.
  2. S. Hesse, C. Bertelt, M.T. Jahnke, A. Schaffrin, P. Baake, M. Malezic, K.H. Mauritz, "Treadmill training with partial body weight support as compared to physiotherapy in non-ambulatory hemiparetic patients", J. Stroke, vol. 26, pp. 76-981, 1995.
  3. H. I. Kim, "A Study on the Gait Training System for the Rehabilitation of the Gait Disorder Patients", Doctorate thesis, Chosun University, 2010.
  4. B. K. Lee, K. J. Chun, D. H. Lim, "Feasibility of New Moving System integrated with Exoskeleton for Gait Rehabilitation", The Korean Society of Mechanical Engineers Conference, Republic of Korea, pp. 3895-3899, Dec, 2013.
  5. P. S. Lum, C. G. Burgar, P. C. Shor, M. Majmundar, and M. V. Loos, "Robot-Assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke", J. Arch. Phys. Med. Rehabil., vol. 83, pp. 952-959, 2002. https://doi.org/10.1053/apmr.2001.33101
  6. S. K. Banala, S. H. Kim, S. K. Agrawal and J. P. Scholz, "Robot Assisted Gait Training With Active Leg Exoskeleton", Transactions on Neural System and rehabilitation Engineering, vol. 17, no. 1, pp. 2-8, 2009. https://doi.org/10.1109/TNSRE.2008.2008280
  7. L. Lunenburger, G. Colombo and R. Riener, " Biofeedback for robotic gait rehabilitation", J. NeuroEngineering and Rehabilitation, vol. 4, no. 1, 1743-0003(ISSN), 2007.
  8. B. Husemann, F. Muller, C. Krewer, S. Heller, and E. Koenig, "Effect of Locomotion Training With Assistance of a Robot-Driven Gait Orthosis in Hemiparetic Patients After Stroke", J. Stroke, vol. 38, pp. 349-354, 2007. https://doi.org/10.1161/01.STR.0000254607.48765.cb
  9. J. F. Veneman, R. Kruidhof, E. G. Hekman, R. Ekkelenkamp, E.V. Asseledonk, and H. Kooij, "Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation", Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, pp. 379-386, 2007. https://doi.org/10.1109/TNSRE.2007.903919
  10. K. Bharadwaj, T. G. Sugar, J. B. Koeneman and E.J. Koeneman, "Design of Robotic Gait Trainer using Spring Over Muscle Actuators for Ankle Stroke Rehbilitation", J.Biomech Eng, vol. 127, no. 6, pp. 1009-1013, 2005. https://doi.org/10.1115/1.2049333
  11. M. Bouri, Y. Stauffer, C. Schmitt, Y. Aallcmand, S. Gncmmi, and R. Clavel, "The WalkTrainer : A Robotic System for Walking Rehabilitation", International Conference on Robotics and Biomimetics, pp. 1616-1621, 2006.
  12. Y. Stauffer, Y. Allemand, M. Bouri, J. Fournier, R. Clavel, P. Metrailler, R. Brodard, and F. Reynard, "The WalkerTrainer-A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation", IEEE Transactions on Neural System and Rehabilitation Engineering, vol. 17, no. 1, pp. 38-45, 2009. https://doi.org/10.1109/TNSRE.2008.2008288
  13. M. Patrick, B. Roland, S. Yves, C. Reymond, and F. Rolf, "Cyberthosis; Rehabilitation robotics with controlled electrical muscle stimulation", J. Rehabilitation Robotics, No.LSRO-CHAPTER, pp. 303-317, 2007.
  14. S. M. Song, C. H. Yu, K. Kim, J. J. Kim, J. N. Kim, W. K. Song, T. K. Kwon, "Preliminary Study on Pattern of Daily Activities related to Lower Extremities for the Body-Weight Support System", The Korean Society of Medical & Biological Engineering Spring Conference, pp. 71, 2015.
  15. Y. H. Choi, "The Analysis of Balance and muscle Activity according to Stair Height Gait Training in Adult Hemiplegia", Master's thesis, Daegu University, 2012.
  16. S. H. Kim, J. H. Ryu, D. H. Kim, "Gait phase classification for Stair walking using Feature Extraction and Muscle selection based on EMG Signals", IEIE Summer Conference, Republic of Korea, vol. 37, no.1, pp. 1053-1056, 2014.
  17. M. J. Hessert, M. Vyas, J. Leach, K. Hu, L. A. Lipstiz and V. Novak, "Foot Pressure distribution during walking in young and old adults", BMC Geriatrics, vol. 5, 2005.
  18. G. Bovi, M.Rabuffetti, P. Mazzoleni, M. Ferrarin, " A multiple-task gait analysis approach: Kinematic, kinetic and EMG reference data for healthy young and adult subjects", Gate & Posture, vol. 33, pp. 6-13, 2011. https://doi.org/10.1016/j.gaitpost.2010.08.009
  19. Y. Okita, N. Tatematsu, K. Nagai, T. Nakayama, T. Nakayamata, T. Okamoto, J. Toguchida, N. Ichihashi, S. Matsuda, and T. Tsuboyama, "The effect of walking speed on gait kinematics and kinetics after endoprosthetic knee replacement following bone tumor resection", Gait & Posture, vol. 40, pp. 622-627, 2014. https://doi.org/10.1016/j.gaitpost.2014.07.012
  20. G. J. Jerome, S. U. Ko, D. K. Kauffman, S. A. Studenski, L. Ferrucci, and E. M. Simonsick, "Gait characteristics associated with walking speed decline in older adults: Results from the Baltimore Longitudinal Study of Aging", J. Archives of Gerontoloty and Geriatrics, vol. 60, pp. 239-243, 2015. https://doi.org/10.1016/j.archger.2015.01.007