스핀코터를 이용한 박막의 기계적 안정성 평가

Mechanical Stability Evaluation of Thin Film with Spin-coater

  • 김지은 (한양대학교 자연과학대학 나노융합과학과) ;
  • 김정환 (한양대학교 공과대학 신소재공학과) ;
  • 홍성철 (한양대학교 공과대학 신소재공학과) ;
  • 조한구 (한양대학교 나노과학기술연구소) ;
  • 안진호 (한양대학교 공과대학 신소재공학과)
  • Kim, Ji Eun (Department of Convergence Nanoscience, Hanyang University) ;
  • Kim, Jung Hwan (Department of Materials Science and Engineering, Hanyang University) ;
  • Hong, Seongchul (Department of Materials Science and Engineering, Hanyang University) ;
  • Cho, HanKu (Institute of Nano Science and Technology, Hanyang University) ;
  • Ahn, Jinho (Department of Materials Science and Engineering, Hanyang University)
  • 투고 : 2016.02.03
  • 심사 : 2016.02.29
  • 발행 : 2016.03.31

초록

For high volume manufacturing using extreme ultraviolet (EUV) lithography, mask protection from contamination during lithography process must be solved, and EUV pellicle is the strongest solution. Based on the technical requirements of EUV pellicle, EUV pellicle should have large membrane area ($110{\times}140mm^2$) with film transmittance over 90% and mechanical stability. Even though pellicle that satisfies size standard with high transmittance has been reported, its mechanical stability has not been confirmed, nor is there a standard to evaluate the mechanical stability. In this study, we suggest a rather simple method evaluating mechanical stability of pellicle membrane using spin-coater which can emulate the linear accelerated motion. The test conditions were designed by simulating the acceleration distribution inside pellicle membrane through correlating the linear acceleration and centripetal acceleration, which occurs during linear movement and rotation movement, respectively. By these simulation results, we confirmed the possibility of using spin-coater to evaluate the mechanical stability of EUV pellicle.

키워드

참고문헌

  1. B. Wu and A. Kumar, "Extreme ultraviolet lithography: A review", J. Vac. Sci. Technol. B, Vol. 25, No.6, pp. 1743-1761, (2007). https://doi.org/10.1116/1.2794048
  2. H. Meiling, V. Banine, P. Kurz, N. Harned. "Progress in the ASML EUV program", Proc. of SPIE, Vol. 5374, Issue PART 1, pp. 31-42, (2004).
  3. I. S. Kim, J. W. Kim and H. K. Oh, "Study of temperature behaviors for a pellicle in extreme-ultraviolet lithography: Mesh structure", Jpn. J. Appl. Phys., Vol. 52, No. 12, 126506 (2013). https://doi.org/10.7567/JJAP.52.126506
  4. K.H. Ko, G.J. Kim, M. Yeung, E. Garouch and H.K. oh, "Imaging performance of mesh supported pellicle for extreme ultraviolet lithography", Jpn. J. Appl. Phys., Vol. 53, No. 6, 06JA02 (2014). https://doi.org/10.7567/JJAP.53.06JA02
  5. L. Scaccabarozzi, D. Smith, P. Rizo Diago, E. Casimiri, N. Dziomkina, and H. Meijer, "Investigation of EUV pellicle feasibility", Proc. of SPIE, Vol. 8679, Extreme Ultraviolet (EUV) Lithography IV, 867904, (2013).
  6. I. Skurai, T. Shirasaki, M. Kashida, and Y.Kubota, "Pellicle for ArF excimer laser photolithography", Photomask and X-ray Mask Technology 4, Proc. of SPIE, Vol. 3748, pp. 177-187, (1999).
  7. H. Lee, E. Kim, J. Kim, and H. OH, "Temperature Behavior of Pellicles in Extreme Ultraviolet Lithography", J. Korean Phys. Soc., Vol. 61, No. 7, pp.1093-1096, (2012). https://doi.org/10.3938/jkps.61.1093
  8. Y. A. Shroff, M. Leeson, and P. Yan, "High transmission pellicles for extreme ultraviolet lithography reticle protection", J. Vac. Sci. Technol. B, Vol. 28, No.6, pp. C6E36-C6E41, (2010).
  9. Y. A. Shroff, M. Goldstein, B. Rice, S. H. Lee, K. V. Ravi, and D. Tanzil, "EUV Pellicle Development for Mask Defect Control", Proc. of SPIE, Vol. 6151, Emerging Lithographic Technologies X, 615104, (2006).
  10. C. Zoldesi, K. Bal, B. Blum, G. Bock, D. Brouns, F. Dhalluin, N. Dziomkina, J. Diego, A. Espinoza, J. de Hoogh, S. Houweling, M. Jansen, M. Kamali, A. Kempa, R. Kox, R. de Kruif, J. Lima, Y. Liu, H. Meijer, H. Meiling, I. van Mil, M. Reijnen, L.Scaccabarozzi, D. Smith, B. Verbrugge, L. de Winter, X. Xiong, and J. Zimmerman. "Progress on EUV pellicle development", Proc. of SPIE, Vol. 9048, Extreme Ultraviolet (EUV) Lithography V, 90481N, (2014).
  11. J. Chung, J.E. Oh and H.H. Yoo, "Non-linear vibration of a flexible spinning disc with angular acceleration", Journal of Sound and Vibration, Vol.231, No.2, pp375-391, (2000). https://doi.org/10.1006/jsvi.1999.2718
  12. Ruth E. Mayagoitia, Anand V.Nene and Peter H.Veltink, "Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems", Journal of biomechanics, Vol. 35, No. 4, pp.537-542, (2002). https://doi.org/10.1016/S0021-9290(01)00231-7
  13. Seppo J. Ovaska and Sami Valivita, "Angular acceleration measurement: A Review", Instrumentation and Measurement Technology Conference, IEEE Vol. 2, pp.875-880, (1998).