DOI QR코드

DOI QR Code

Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications

  • Bose, Rajendran JC (School of Integrative Engineering, Chung-Ang University) ;
  • Lee, Soo-Hong (Department of Biomedical Science, CHA University) ;
  • Park, Hansoo (School of Integrative Engineering, Chung-Ang University)
  • 투고 : 2016.07.19
  • 심사 : 2016.10.11
  • 발행 : 2016.12.01

초록

The use of poly(lactic-co-glycolic acid) (PLGA)-based nanocarriers presents several major challenges, including their synthetic hydrophobic surface, low transfection efficiency, short circulation half-life, and nonspecific tissue distribution. Numerous engineering strategies have been employed to overcome these problems, with lipid-based surface functionalization of PLGA nanoparticles (NPs) showing promising results in the development of PLGA-based clinical nanomedicines. Surface engineering with different lipids enhances the target specificity of the carrier and improves its physicochemical properties as well as NP-cell associations, such as cellular membrane permeability, immune responses, and long circulation half-life in vivo. This review focuses on recent advances in the lipid-based surface engineering of PLGA NPs for drug and gene delivery applications.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev. 2006;58:1456-9. https://doi.org/10.1016/j.addr.2006.09.011
  2. Li L, Huh KM. Polymeric nanocarrier systems for photodynamic therapy. Biomater Res. 2014;18:1. https://doi.org/10.1186/2055-7124-18-1
  3. Bose RJC, Soo-Hong L, Park H. Fabrication and characterization of PLGA polymer-lipid hybrid nanoparticle for gene delivery platform, The Polymer Society of Korea Proceedings of 2014 Spring Conference paper. 2014. p. 60.
  4. Udomluck N, Baipaywad P, Lee S-H, Park H. Poly (N-isopropylacrylamide)-based nanogels encapsulating gold nanoparticles for DNA delivery. J Control Release. 2015;213:e85.
  5. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505-22. https://doi.org/10.1016/j.jconrel.2012.01.043
  6. Duraisamy K, Kalaiyarasi D, Bose R, Jaganathan K. Evaluation of m-cell targeted lectin anchored PLGA nanoparticles for oral immunization against hepatitis B infections. In: J Gastroenterol Hepatol. NJ: Wiley-Blackwell; 2012. p. 155-6.
  7. Yang J, Li Y, Jin S, Xu J, Wang PC, Liang X-J, Zhang X. Engineered biomaterials for development of nucleic acid vaccines. Biomater Res. 2015;19:1. https://doi.org/10.1186/s40824-014-0026-7
  8. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone. Biomater Res. 2016;20:1. https://doi.org/10.1186/s40824-016-0048-4
  9. Krishnakumar D, Kalaiyarasi D, Bose J, Jaganathan K. Evaluation of mucoadhesive nanoparticle based nasal vaccine. J Pharm Investigation. 2012;42:315-26. https://doi.org/10.1007/s40005-012-0042-3
  10. Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci. 2011;108:10980-5. https://doi.org/10.1073/pnas.1106634108
  11. Bose RJC, Ahn JC, Yoshie A, Park S, Park H, Lee SH. Preparation of cationic lipid layered PLGA hybrid nanoparticles for gene delivery. Journal of controlled release: official journal of the Controlled Release Society. 2015; 213:e92-3.
  12. Bose RJC, Kim BJ, Lee SH, Park H. Surface modification of polymeric nanoparticles with human adipose derived stem cell membranes AdMSCs, 10th World Biomaterials Congress Abstract. Front Bioeng Biotechnol. 2016. doi:10.3389/conf.FBIOE.2016.01.01711.
  13. Bose RJC, Lee SH, Park H. Lipid polymer hybrid nanospheres encapsulating antiproliferative agents for stent applications. Journal of Industrial and Engineering Chemistry. 2016;36:284-92. https://doi.org/10.1016/j.jiec.2016.02.015
  14. Krishnamurthy S, Gnanasammandhan MK, Xie C, Huang K, Cui MY, Chan JM. Monocyte Cell Membrane-derived Nanoghosts for Targeted Cancer Therapy. Nanoscale. 2016;8(13):6981-5. https://doi.org/10.1039/C5NR07588B
  15. Bose RJC, Yoshie A, Ahn JC, Park H, Lee SH. Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery. Int J Nanomedicine. 2015;10:5367-82.
  16. Zhang L, Chan JM, Gu FX, Rhee J-W, Wang AZ, Radovic-Moreno AF, Alexis F, Langer R, Farokhzad OC. Self-assembled lipid - polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2:1696-702. https://doi.org/10.1021/nn800275r
  17. Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85:427-43. https://doi.org/10.1016/j.ejpb.2013.07.002
  18. Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol Biol Med. 2013;9:474-91. https://doi.org/10.1016/j.nano.2012.11.010
  19. Bose RJC, Lee SH, Park H. Biofucntionalized nanoparticles:an emerging drug delivery platform for various disease treatments. Drug Discov Today. 2016; 21(8):1303-12. https://doi.org/10.1016/j.drudis.2016.06.005
  20. Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11:20140459. https://doi.org/10.1098/rsif.2014.0459
  21. Eibl H, Kaufmann-Kolle P. Medical application of synthetic phospholipids as liposomes and drugs. J Liposome Res. 1995;5:131-48. https://doi.org/10.3109/08982109509039914
  22. van Hoogevest P, Wendel A. The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol. 2014;116:1088-107. https://doi.org/10.1002/ejlt.201400219
  23. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6:715-28. https://doi.org/10.2217/nnm.11.19
  24. Clawson C, Ton L, Aryal S, Fu V, Esener S, Zhang L. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered poly (ethylene glycol) shedding. Langmuir. 2011;27:10556-61. https://doi.org/10.1021/la202123e
  25. Hu C-MJ, Fang RH, Luk BT, Chen KN, Carpenter C, Gao W, Zhang K, Zhang L. 'Marker-of-self'functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale. 2013;5:2664-8. https://doi.org/10.1039/c3nr00015j
  26. Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526:118-21. https://doi.org/10.1038/nature15373
  27. Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10:521-35. https://doi.org/10.1038/nrd3499
  28. Kim Y, Lee Chung B, Ma M, Mulder WJ, Fayad ZA, Farokhzad OC, Langer R. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices. Nano Lett. 2012;12:3587-91. https://doi.org/10.1021/nl301253v
  29. Yang X-Z, Dou S, Wang Y-C, Long H-Y, Xiong M-H, Mao C-Q, Yao Y-D, Wang J. Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano. 2012;6:4955-65. https://doi.org/10.1021/nn300500u
  30. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436:568-72. https://doi.org/10.1038/nature03794
  31. Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC, Tian S, Napier ME, Pohlhaus PD, Rolland JP. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2011;12:287-92.
  32. Mieszawska AJ, Gianella A, Cormode DP, Zhao Y, Meijerink A, Langer R, Farokhzad OC, Fayad ZA, Mulder WJ. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem Commun. 2012;48:5835-7. https://doi.org/10.1039/c2cc32149a
  33. Fang RH, Aryal S, Hu C-MJ, Zhang L. Quick synthesis of lipid - polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir. 2010;26:16958-62. https://doi.org/10.1021/la103576a
  34. Lee J-J, Lee SY, Park J-H, Kim D-D, Cho H-J. Cholesterol-modified poly (lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery. Int J Pharm. 2016;509(1-2):483-91. https://doi.org/10.1016/j.ijpharm.2016.06.008
  35. Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B: Biointerfaces. 2011;85: 214-20. https://doi.org/10.1016/j.colsurfb.2011.02.033
  36. Zhang L, Zhang L. Lipid-polymer hybrid nanoparticles: synthesis, characterization and applications. Nano Life. 2010;1:163-73. https://doi.org/10.1142/S179398441000016X
  37. Cheow WS, Chang MW, Hadinoto K. The roles of lipid in anti-biofilm efficacy of lipid-polymer hybrid nanoparticles encapsulating antibiotics. Colloids Surf A Physicochem Eng Asp. 2011;389:158-65. https://doi.org/10.1016/j.colsurfa.2011.08.035
  38. Birajdar MS, Lee J. Sonication-triggered zero-order release by uncorking core-shell nanofibers. Chem Eng J. 2016;288:1-8. https://doi.org/10.1016/j.cej.2015.11.095
  39. Arumugam S, Sreedhar R, Thandavarayan RA, Karuppagounder V, Watanabe K. Targeting fatty acid metabolism in heart failure: is it a suitable therapeutic approach? Drug Discov Today. 2016;21:1003-8. https://doi.org/10.1016/j.drudis.2016.02.010
  40. Luderer F, Lobler M, Rohm HW, Gocke C, Kunna K, Kock K, Kroemer HK, Weitschies W, Schmitz K-P, Sternberg K. Biodegradable sirolimus-loaded poly (lactide) nanoparticles as drug delivery system for the prevention of in-stent restenosis in coronary stent application. J Biomater Appl. 2011;25:851-75. https://doi.org/10.1177/0885328209360696
  41. Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5:505-15. https://doi.org/10.1021/mp800051m
  42. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, Napier M, Bear JE, DeSimone JM. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12:5304-10. https://doi.org/10.1021/nl302638g
  43. Rao L, Bu LL, Xu JH, Cai B, Yu GT, Yu X, He Z, Huang Q, Li A, Guo SS. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small. 2015; 11:6225-36. https://doi.org/10.1002/smll.201502388
  44. Aryal S, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Zhang D-E, Zhang L. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine. 2013;8:1271-80. https://doi.org/10.2217/nnm.12.153
  45. Fang RH, Hu C-MJ, Chen KN, Luk BT, Carpenter CW, Gao W, Li S, Zhang D-E, Lu W, Zhang L. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale. 2013;5:8884-8. https://doi.org/10.1039/c3nr03064d
  46. RHe A. Cancer Cell Membrane-Coated Nanoparticles for Anticancer Vaccination and Drug Delivery. Nano Lett. 2014;14:2181-8. https://doi.org/10.1021/nl500618u
  47. Duraisamy K, Jaganathan K, Bose JC. Methods of detecting cervical cancer. Adv Biol Res. 2011;5:226-32.
  48. Anselmo AC, Modery-Pawlowski CL, Menegatti S, Kumar S, Vogus DR, Tian LL, Chen M, Squires TM, Sen Gupta A, Mitragotri S. Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano. 2014;8:11243-53. https://doi.org/10.1021/nn503732m
  49. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV. Biomimetic functionalization with leukocyte membranes imparts cell like functions to synthetic particles. Nat Nanotechnol. 2013;8:61. https://doi.org/10.1038/nnano.2012.212
  50. Y-k G, Winnik FM. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications. Nanoscale. 2012;4:360-8. https://doi.org/10.1039/C1NR11297J
  51. Zhong Q, Chinta D, Pamujula S, Wang H, Yao X, Mandal TK, Luftig RB. Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes. J Nanobiotechnol. 2010;8:6. https://doi.org/10.1186/1477-3155-8-6
  52. Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed. 2011;50:7027-31. https://doi.org/10.1002/anie.201101554
  53. Dudia A, Kocer A, Subramaniam V, Kanger JS. Biofunctionalized Lipid ? Polymer Hybrid Nanocontainers with Controlled Permeability. Nano Lett. 2008;8:1105-10. https://doi.org/10.1021/nl073211b
  54. Subbiah R, Suhaeri M, Hwang MP, Kim W, Park K. Investigation of the changes of biophysical/mechanical characteristics of differentiating preosteoblasts in vitro. Biomater Res. 2015;19:1. https://doi.org/10.1186/s40824-014-0026-7
  55. Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220:600-7. https://doi.org/10.1016/j.jconrel.2015.07.019
  56. Zheng Y, Yu B, Weecharangsan W, Piao L, Darby M, Mao Y, Koynova R, Yang X, Li H, Xu S. Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor $7{\alpha}$-APTADD to breast cancer cells. Int J Pharm. 2010;390:234-41. https://doi.org/10.1016/j.ijpharm.2010.02.008
  57. Wang AZ, Yuet K, Zhang L, Gu FX, Huynh-Le M, Radovic-Moreno AF, Kantoff PW, Bander NH, Langer R, Farokhzad OC. ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine. 2010;5:361-8. https://doi.org/10.2217/nnm.10.6
  58. Aryal S, Hu CMJ, Zhang L. Combinatorial Drug Conjugation Enables Nanoparticle Dual-Drug Delivery. Small. 2010;6:1442-8. https://doi.org/10.1002/smll.201000631
  59. Chan JM, Rhee J-W, Drum CL, Bronson RT, Golomb G, Langer R, Farokhzad OC. In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid-polymeric nanoparticles. Proc Natl Acad Sci. 2011;108:19347-52. https://doi.org/10.1073/pnas.1115945108
  60. Dehaini D, Fang RH, Luk BT, Pang Z, Hu C-MJ, Kroll AV, Yu CL, Gao W, Zhang L. Ultra-small lipid-polymer hybrid nanoparticles for tumorpenetrating drug delivery. Nanoscale. 2016;8:14411-9. https://doi.org/10.1039/C6NR04091H
  61. Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem. 2011;123:7165-9. https://doi.org/10.1002/ange.201101554
  62. Zhao P, Wang H, Yu M, Liao Z, Wang X, Zhang F, Ji W, Wu B, Han J, Zhang H. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2012;81:248-56. https://doi.org/10.1016/j.ejpb.2012.03.004
  63. Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater. 2015;28:149-59. https://doi.org/10.1016/j.actbio.2015.09.032
  64. Fang RH, Hu C-MJ, Luk BT, Gao W, Copp JA, Tai Y, O'Connor DE, Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14:2181-8. https://doi.org/10.1021/nl500618u

피인용 문헌

  1. Enhanced antitumor activity in A431 cells via encapsulation of 20(R)-ginsenoside Rg3 in PLGA nanoparticles vol.43, pp.10, 2016, https://doi.org/10.1080/03639045.2017.1339079
  2. Development of Poly Lactic/Glycolic Acid (PLGA) Microspheres for Controlled Release of Rho-Associated Kinase Inhibitor vol.2017, pp.None, 2016, https://doi.org/10.1155/2017/1598218
  3. Trigger-Responsive Gene Transporters for Anticancer Therapy vol.7, pp.6, 2017, https://doi.org/10.3390/nano7060120
  4. Evaluation of MC3T3 Cells Proliferation and Drug Release Study from Sodium Hyaluronate-1,4-butanediol Diglycidyl Ether Patterned Gel vol.7, pp.10, 2016, https://doi.org/10.3390/nano7100328
  5. Lipid Polymer Hybrid Nanomaterials for mRNA Delivery vol.11, pp.5, 2016, https://doi.org/10.1007/s12195-018-0536-9
  6. Treatment of pancreatic ductal adenocarcinoma with tumor antigen specific-targeted delivery of paclitaxel loaded PLGA nanoparticles vol.18, pp.None, 2016, https://doi.org/10.1186/s12885-018-4393-7
  7. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials vol.16, pp.None, 2016, https://doi.org/10.1186/s12951-018-0339-0
  8. Microfluidic assisted synthesis of PLGA drug delivery systems vol.9, pp.4, 2016, https://doi.org/10.1039/c8ra08972h
  9. Hand powered, cost effective, 3D printed nanoparticle synthesizer: effects of polymer end caps, drugs, and solvents on lipid polymer hybrid nanoparticles vol.6, pp.2, 2019, https://doi.org/10.1088/2053-1591/aaed72
  10. Chlorin e6-Loaded PEG-PCL Nanoemulsion for Photodynamic Therapy and In Vivo Drug Delivery vol.20, pp.16, 2016, https://doi.org/10.3390/ijms20163958
  11. Biodegradable polymers for modern vaccine development vol.77, pp.None, 2016, https://doi.org/10.1016/j.jiec.2019.04.044
  12. Recent Advances in Nanovaccines Using Biomimetic Immunomodulatory Materials vol.11, pp.10, 2016, https://doi.org/10.3390/pharmaceutics11100534
  13. Transdermal delivery of Minoxidil using HA-PLGA nanoparticles for the treatment in alopecia vol.23, pp.1, 2019, https://doi.org/10.1186/s40824-019-0164-z
  14. Recent Advances in the Transdermal Delivery of Protein Therapeutics with a Combinatorial System of Chemical Adjuvants and Physical Penetration Enhancements vol.3, pp.2, 2016, https://doi.org/10.1002/adtp.201900116
  15. Organic Nanocarriers for Delivery and Targeting of Therapeutic Agents for Cancer Treatment vol.3, pp.2, 2016, https://doi.org/10.1002/adtp.201900136
  16. Efficient and Low Cytotoxicity Gene Carriers Based on Amine-Functionalized Polyvinylpyrrolidone vol.12, pp.11, 2016, https://doi.org/10.3390/polym12112724
  17. Current Development of the Applications of Polymers in Gene Delivery vol.271, pp.None, 2016, https://doi.org/10.1051/e3sconf/202127104043
  18. Chemopreventive Effect of 5-Flurouracil Polymeric Hybrid PLGA-Lecithin Nanoparticles against Colon Dysplasia Model in Mice and Impact on p53 Apoptosis vol.11, pp.1, 2016, https://doi.org/10.3390/biom11010109
  19. Sustained Release of MiR-217 Inhibitor by Nanoparticles Facilitates MSC-Mediated Attenuation of Neointimal Hyperplasia After Vascular Injury vol.8, pp.None, 2021, https://doi.org/10.3389/fcvm.2021.739107
  20. Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions vol.2, pp.1, 2021, https://doi.org/10.1088/2632-959x/abeb4b
  21. Lipid-Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays vol.11, pp.7, 2016, https://doi.org/10.3390/bios11070218
  22. Optimisation of a Microfluidic Method for the Delivery of a Small Peptide vol.13, pp.9, 2016, https://doi.org/10.3390/pharmaceutics13091505
  23. Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles Modified with Transferrin for Antitumor : Piperine-Loaded Glycyrrhizic Acid- and PLGA-Based Nanoparticles vol.22, pp.7, 2021, https://doi.org/10.1208/s12249-021-02123-6
  24. Recent trends in nanocarrier based approach in the management of dry eye disease vol.66, pp.None, 2021, https://doi.org/10.1016/j.jddst.2021.102868