DOI QR코드

DOI QR Code

Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid)

  • Kang, Eun Young (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Lih, Eugene (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Kim, Ik Hwan (Department of Biological Science, Korea University) ;
  • Joung, Yoon Ki (Center for Biomaterials, Korea Institute of Science and Technology) ;
  • Han, Dong Keun (Center for Biomaterials, Korea Institute of Science and Technology)
  • 투고 : 2016.01.11
  • 심사 : 2016.02.26
  • 발행 : 2016.03.01

초록

Background: Biodegradable poly(L-lactic acid) (PLLA) is one of the most widely used polymer in biomedical devices, but it still has limitations such as inherent brittleness and acidic degradation products. In this work, PLLA blends with poly($L-lactide-{\varepsilon}-caprolactone$) (PLCL) and $Mg(OH)_2$ were prepared by the thermal processing to improve their physico-mechanical and thermal properties. In addition, the neutralizing effect of $Mg(OH)_2$ was evaluated by degradation study. Results: The elongation of PLLA remarkably increased from 3 to 164.4 % and the glass transition temperature ($T_g$) of PLLA was slightly reduced from 61 to $52^{\circ}C$ by adding PLCL additive. $Mg(OH)_2$ in polymeric matrix not only improved the molecular weight reduction and mechanical strength of PLLA, but also neutralized the acidic byproducts generated during polyester degradation. Conclusions: Therefore, the results demonstrated that the presence of PLCL and $Mg(OH)_2$ additives in PLLA matrix could prevent the thermal decomposition and control degradation behavior of polyester.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. Ray SS, Okamoto M. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun. 2003;24:815-40. https://doi.org/10.1002/marc.200300008
  2. Zhang Z, Feng S-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly (lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006;27:4025-33. https://doi.org/10.1016/j.biomaterials.2006.03.006
  3. Rasal RM, Hirt DE. Micropatterning of covalently attached biotin on poly (lactic acid) film surfaces. Macromol Biosci. 2009;9:989-96. https://doi.org/10.1002/mabi.200800374
  4. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835-64. https://doi.org/10.1002/mabi.200400043
  5. Vink ET, Rabago KR, Glassner DA, Gruber PR. Applications of life cycle assessment to $NatureWorks^{TM}$ polylactide (PLA) production. Polym Degrad Stab. 2003;80:403-19. https://doi.org/10.1016/S0141-3910(02)00372-5
  6. Yu H, Huang N, Wang C, Tang Z. Modeling of poly (L‐lactide) thermal degradation: Theoretical prediction of molecular weight and polydispersity index. J Appl Polym Sci. 2003;88:2557-62. https://doi.org/10.1002/app.12093
  7. Jamshidi K, Hyon S-H, Ikada Y. Thermal characterization of polylactides. Polymer. 1988;29:2229-34. https://doi.org/10.1016/0032-3861(88)90116-4
  8. Kopinke F-D, Remmler M, Mackenzie K, Moder M, Wachsen O. Thermal decomposition of biodegradable polyesters-II. Poly (lactic acid). Polym Degrad Stab. 1996;53:329-42. https://doi.org/10.1016/0141-3910(96)00102-4
  9. Amid P. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1997;1:15-21. https://doi.org/10.1007/BF02426382
  10. Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res. 1997;38:105-14. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<105::AID-JBM4>3.0.CO;2-U
  11. Linhart W, Peters F, Lehmann W, Schwarz K, Schilling AF, Amling M, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res. 2001;54:162-71. https://doi.org/10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3
  12. Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S. Effect of chain extenders on thermal and mechanical properties of poly (lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend. Polym Degrad Stab. 2014;108:232-40. https://doi.org/10.1016/j.polymdegradstab.2014.04.019
  13. Lee S, Lee JW. Characterization and processing of biodegradable polymer blends of poly (lactic acid) with poly (butylene succinate adipate). Korea Aust Rheol J. 2005;17:71-7.
  14. Park JW, Im SS. Phase behavior and morphology in blends of poly (L‐lactic acid) and poly (butylene succinate). J Appl Polym Sci. 2002;86:647-55. https://doi.org/10.1002/app.10923
  15. Li Q, Yoon J-S, Chen G-X. Thermal and biodegradable properties of poly (L-lactide)/poly (${\varepsilon}$-Caprolactone) compounded with functionalized organoclay. J Polym Environ. 2011;19:59-68. https://doi.org/10.1007/s10924-010-0256-2
  16. Wang L, Ma W, Gross R, McCarthy S. Reactive compatibilization of biodegradable blends of poly (lactic acid) and poly (${\varepsilon}$-caprolactone). Polym Degrad Stab. 1998;59:161-8. https://doi.org/10.1016/S0141-3910(97)00196-1
  17. Wu D, Zhang Y, Zhang M, Yu W. Selective localization of multiwalled carbon nanotubes in poly (${\varepsilon}$-caprolactone)/polylactide blend. Biomacromolecules. 2009;10:417-24. https://doi.org/10.1021/bm801183f
  18. Gu X-N, Li S-S, Li X-M, Fan Y-B. Magnesium based degradable biomaterials: A review. Front Mater Sci. 2014;8:200-18. https://doi.org/10.1007/s11706-014-0253-9
  19. Kum CH, Cho Y, Joung YK, Choi J, Park K, Seo SH, et al. Biodegradable poly (l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. J Mater Chem B. 2013;1:2764-72. https://doi.org/10.1039/c3tb00490b
  20. Wen W, Luo B, Qin X, Li C, Liu M, Ding S, et al. Strengthening and toughening of poly (L-lactide) composites by surface modified MgO whiskers. Appl Surf Sci. 2015;332:215-23. https://doi.org/10.1016/j.apsusc.2015.01.167
  21. Kaci M, Benhamida A, Zaidi L, Touati N, Remili C. Photodegradation of Poly (Lactic Acid)/Organo-Modified Clay Nanocomposites under Natural Weathering Exposure. Ecosustainable Polymer Nanomaterials for Food Packaging: Innovative Solutions, Characterization Needs, Safety and Environmental Issues. 2013: 281
  22. Scoponi M, Pradella F, Kaczmarek H, Amadelli R, Carassiti V. A reappraisal of the photo-oxidation mechanism at short and long wavelengths for poly (2, 6-dimethyl-1, 4-phenylene oxide). Polymer. 1996;37:903-16. https://doi.org/10.1016/0032-3861(96)87272-7
  23. Li AD, Sun Z, Zhou M, Xu X, Ma J, Zheng W, et al. Electrospun Chitosangraft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. Colloids Surf B. 2013;102:674-81. https://doi.org/10.1016/j.colsurfb.2012.09.035
  24. Coltelli M-B, Toncelli C, Ciardelli F, Bronco S. Compatible blends of biorelated polyesters through catalytic transesterification in the melt. Polym Degrad Stab. 2011;96:982-90. https://doi.org/10.1016/j.polymdegradstab.2011.01.028
  25. Sivalingam G, Karthik R, Madras G. Kinetics of thermal degradation of poly (${\varepsilon}$-caprolactone). J Anal Appl Pyrolysis. 2003;70:631-47. https://doi.org/10.1016/S0165-2370(03)00045-7
  26. Douglas JF. A dynamic measure of order in structural glasses. Comput Mater Sci. 1995;4:292-308. https://doi.org/10.1016/0927-0256(95)00031-0
  27. Seidel A. Processing and finishing of polymeric materials Vol. 2. New Jersey, NJ: Wiley; 2011.
  28. Lim L-T, Auras R, Rubino M. Processing technologies for poly (lactic acid). Prog Polym Sci. 2008;33:820-52. https://doi.org/10.1016/j.progpolymsci.2008.05.004
  29. Draye A-C, Persenaire O, Brozek J, Roda J, Kosek T, Dubois P. Thermogravimetric analysis of poly (${\varepsilon}$-caprolactam) and poly [(${\varepsilon}$-caprolactam)-co-(${\varepsilon}$-caprolactone)] polymers. Polymer. 2001;42:8325-32. https://doi.org/10.1016/S0032-3861(01)00352-4
  30. Persenaire O, Alexandre M, Degee P, Dubois P. Mechanisms and kinetics of thermal degradation of poly (${\varepsilon}$-caprolactone). Biomacromolecules. 2001;2:288-94. https://doi.org/10.1021/bm0056310
  31. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839-45. https://doi.org/10.1038/nrm2236
  32. Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9:90-3. https://doi.org/10.1038/nmat2619
  33. DesRochers TM, Palma E, Kaplan DL. Tissue-engineered kidney disease models. Adv Drug Deliv Rev. 2014;69:67-80.
  34. Garrod M, San Chau DY. An Overview of Tissue Engineering as an Alternative for Toxicity Assessment. J Pharm Pharm Sci. 2016;19:31-71. https://doi.org/10.18433/J35P6P
  35. Van der Meer S, De Wijn J, Wolke J. The influence of basic filler materials on the degradation of amorphous D-and L-lactide copolymer. J Mater Sci Mater Med. 1996;7:359-61. https://doi.org/10.1007/BF00154549
  36. Gibbons D. Tissue response to resorbable synthetic polymers. Degradation phenomena on polymeric biomaterials: Springer; 1992. p. 97-105.

피인용 문헌

  1. Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide vol.20, pp.1, 2016, https://doi.org/10.1080/15685551.2016.1231038
  2. Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels vol.24, pp.19, 2016, https://doi.org/10.1089/ten.tea.2017.0489
  3. The Influence of Low Shear Microbore Extrusion on the Properties of High Molecular Weight Poly( L -Lactic Acid) for Medical Tubing Applications vol.11, pp.4, 2016, https://doi.org/10.3390/polym11040710
  4. Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide vol.7, pp.6, 2019, https://doi.org/10.1039/c8bm01696h
  5. Bioresorbable Polymeric Scaffold in Cardiovascular Applications vol.21, pp.10, 2020, https://doi.org/10.3390/ijms21103444
  6. Poly(L-Lactic Acid) Composite with Surface-Modified Magnesium Hydroxide Nanoparticles by Biodegradable Oligomer for Augmented Mechanical and Biological Properties vol.14, pp.19, 2016, https://doi.org/10.3390/ma14195869