References
- Adami, A., A. Mortari, E. Morganti and L. Lorenzelli. 2016. Microfluidic sample preparation methods for the analysis of milk contaminants. Journal of Sensors 2016:2385267.
- Ahmad, B., E. Stride and M. Edirisinghe. 2012. Calcium Alginate Foams Prepared by a Microfluidic T-Junction System: Stability and Food Applications. Food and Bioprocess Technology 5(7):2848-2857. https://doi.org/10.1007/s11947-011-0650-3
- Arevalo, F. J., A. M. Granero, H. Fernandez, J. Raba and M. A. Zon. 2011. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 83:966-973. https://doi.org/10.1016/j.talanta.2010.11.007
- Atalay, Y. T., S. Vermeir, D. Witters, N. Vergauwe, B. Verbruggen, P. Verboven, B. M. Nicolaï and J. Lammertyn. 2011. Microfluidic analytical systems for food analysis. Trends in Food Science & Technology 22:386-404. https://doi.org/10.1016/j.tifs.2011.05.001
- Babrak, L., A. Lin, L. H. Stanker, J. McGarvey and R. Hnasko. 2015. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins 8(1):13.
- Bhatta, D., M. M. Villalba, C. L. Johnson, G. D. Emmerson, N. P. Ferris, D. P. King and C. R. Lowe. 2012. Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Procedia Chemistry 6:2-10. https://doi.org/10.1016/j.proche.2012.10.124
- Becker, H. and C. Gartner. 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry 290:89-111.
- Beyor, N., T. S. Seo, P. Liu and R. A. Mathies. 2008. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomedical Microdevices 10(6):909-917. https://doi.org/10.1007/s10544-008-9206-3
- Buchegger, W., C. Wagner, B. Lendl, M. Kraft and M. Vellekoop. 2011. A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluidics and Nanofluidics 10:889-897. https://doi.org/10.1007/s10404-010-0722-0
- Campbell, G. M. and E. Mougeot. 1999. Creation and characterization of aerated food products. Trends in Food Science & Technology 10:283-296. https://doi.org/10.1016/S0924-2244(00)00008-X
- Chang, H. C. 2006. Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. The Canadian Journal of Chemical Engineering 84(2):146-160. https://doi.org/10.1139/v05-242
- Choudhury, D., D. van Noort, C. Iliescu, B. Zheng, K. L. Poon, S. Korzh, V. Korzh and H. Yu. 2012. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab on a Chip 12:892-900. https://doi.org/10.1039/C1LC20351G
- Chen, J., D. Chen, Y. Xie, T. Yuan and X. Chen. 2013. Progress of Microfluidics for Biology and Medicine. Nano-Micro Letters 5(1):66-80. https://doi.org/10.1007/BF03354852
- Choi, E., B. Kim and J. Park. 2009. High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering 19:125014. https://doi.org/10.1088/0960-1317/19/12/125014
- Cuadros, T. R., O. Skurtys and J. M. Aguilera. 2012. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydrate Polymers 89(4):1198-1206. https://doi.org/10.1016/j.carbpol.2012.03.094
- Dong, Y., Y. Xu, Z. Liu, Y. Fu, T. Ohashi, Y. Tanaka, K. Mawatari and T. Kitamori. 2011. Rapid screening swine foot-and-mouth disease virus using micro-ELISA system. Lab on a Chip 11(13):2153-2155. https://doi.org/10.1039/c0lc00678e
- Galarreta, B. C., M. Tabatabaei, V. Guieu, E. Peyrin and F. Lagugne-Labarthet. 2013. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Analytical and Bioanalytical Chemistry 405:1613-1621. https://doi.org/10.1007/s00216-012-6557-7
- Guo, L., J. Feng, Z. Fang, J. Xu and X. Lu. 2015. Application of microfluidic "lab-on-a-chip" for the detection of mycotoxins in foods. Trends in Food Science & Technology 46:252-263. https://doi.org/10.1016/j.tifs.2015.09.005
- Guo, Y., X. Liu, X. Sun, Y. Cao and X. Y. Wang. 2015. A PDMS microfluidic impedance immunosensor for sensitive detection of pesticide residues in vegetable real samples. International Journal of Electrochemical Science 10:4155-4164.
- Hamon, M. O. A. Oyarzabal and J. W. Hong. 2013. Nanoliter/picoloter scale fluidic systems for food safety. In: Advances in applied nanotechnology for agriculture. eds. B. Park and M. Appell. pp. 145-165 Washington, DC: ACS.
- He, B., B. J. Burke, X. Zhang, R. Zhang and F. E. Regnier. 2001. A picoliter-volume mixer for microfluidic analytical systems. Analytical Chemistry 73: 1942-1947. https://doi.org/10.1021/ac000850x
- Hervas, M., M. A. Lopez and A.lberto Escarpa. 2009. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst 134:2405-2411. https://doi.org/10.1039/b911839j
- Hervas, M., M. A. Lopez and A.lberto Escarpa. 2011. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136: 2131-2138. https://doi.org/10.1039/c1an15081b
- Hu, H., Y. Deng and H. Zou. 2013. Microfluidic smectitepolymer nanocomposite strip sensor for aflatoxin detection. IEEE Sensors Journal 13:1835-1839. https://doi.org/10.1109/JSEN.2013.2242057
- Huang, C. W., Y. T. Lin, S. T. Ding, L. L. Lo, P. H. Wang, E. C. Lin, F. W. Liu and Y. W. Lu. 2015. Efficient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. Microarrays 4:570-595. https://doi.org/10.3390/microarrays4040570
- Karsunke, X. Y. Z. and R. Niessner. 2009. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. 2009. Analytical and Bioanalytical Chemistry 395:1623-1630. https://doi.org/10.1007/s00216-009-2905-7
- Kempisty, B., R. Walczak, P. Antosik, P. Sniadek, M. Rybska, H. Piotrowska, D. Bukowska, J. Dziuban, M. Nowicki, J. M. Jaskowski, M. Zabel and K. P. Brussow. 2014. Microfluidic Method of Pig Oocyte Quality Assessment in relation to Different Follicular Size Based on Lab-on-Chip Technology. BioMed Research International 2014:467063.
- Laporte, M., A. Montillet, D. D. Valle, C. Loisel and A. Riaublanc. 2016. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput. Journal of Food Engineering 173:25-33. https://doi.org/10.1016/j.jfoodeng.2015.10.032
- Lee, C. Y., C. L. Chang, Y. N. Wang and L. M. Fu. 2011. Microfluidic mixing: a review. International Journal of Molecular Sciences 12:3263-3287. https://doi.org/10.3390/ijms12053263
- Li, P., Z. Zhang, Q. Zhang, N., Zhang, W. Zhang, X. Ding and R. Li. 2012. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 33:2253-2265. https://doi.org/10.1002/elps.201200050
- Liu, R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe. 2000., Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical systems 9:190-197. https://doi.org/10.1109/84.846699
- Liu, R. H., R. Lenigk, S. R. L. Druyor, J. Yang and P. Grodzinski. 2003. Hybridization enhancement using cavitation microstreaming. Analytical Chemistry 75:1911-1917. https://doi.org/10.1021/ac026267t
- Lliescu, C., H. Taylor, M. Avram, J. Miao and S. Franssila. 2012. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505. https://doi.org/10.1063/1.3689939
- Luka, G., A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani and M. Hoorfar. 2015. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 15:30011-30031. https://doi.org/10.3390/s151229783
- Ma, R., L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang and J. Cheng. 2011. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and earlyembryo development. Analytical Chemistry 83(8):2964-2970. https://doi.org/10.1021/ac103063g
- Mairhofer, J., K. Roppert and P. Ertl. 2009. Microfluidic systems for pathogen sensing: A review. Sensors 9:4804-4823. https://doi.org/10.3390/s90604804
- Mao, X. and T. J. Huang. 2012. Microfluidic diagnostics for the developing world. Lab on a Chip 12:1412-1416. https://doi.org/10.1039/c2lc90022j
- Mark, D., S. Haeberle, G. Roth, F. Stetten and R. Zengerle. 2009. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews 39:1153-1182.
- McGrath, J. S., J. Quist, J. R. T. Seddon, S. C. S. Lai, S. G. Lemay and H. L. Bridle. 2016. Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe. PLoS ONE 11(3):e0150438. https://doi.org/10.1371/journal.pone.0150438
- Melin,J., G. Gimenez, N. Roxhed, W. van der Wijngaart and G. Stemme. 2004. A fast passive and planar liquid sample micromixer. Lab on a Chip 4:214-219. https://doi.org/10.1039/B314080F
- Neethirajan, S., I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal and F. Lin. 2011. Microfluidics for food, agriculture and biosystems industries. Lab on a Chip 11(9):1574-1586. https://doi.org/10.1039/c0lc00230e
- Niu, X. and Y. K. Lee. 2003. Efficient spatial-temporal chaotic mixing in microchannels. Journal of Micromechanics and Microengineering 13:454-462. https://doi.org/10.1088/0960-1317/13/3/316
- Novo, P., G. Moulas, D. M. F. Prazeres, V. Chu and J. P. Conde. 2013. Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B 176:232-240. https://doi.org/10.1016/j.snb.2012.10.038
- Ramadan, Q. and M. A. M Gijs. 2012. Microfluidic applications of functionalized magnetic particles for environmental analysis: Focus on waterborne pathogen detection. Microfluidics and Nanofluidics 13(4):529-542. https://doi.org/10.1007/s10404-012-1041-4
- Santis, R. D., A. Ciammaruconi, G. Faggioni, S. Fillo, B. Gentile, E. D. Giannatale, M. Ancora and F. Lista. 2011. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiology 11:60. https://doi.org/10.1186/1471-2180-11-60
- Sekhon, B. S.. 2012. Nanoprobes and their applications in veterinary medicine and animal health. Research Journal of Nanoscience and Nanotechnology 2(1):1-16. https://doi.org/10.3923/rjnn.2012.1.16
- Skurtys, O. and J. M. Aguilera. 2008. Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3(1):1-15. https://doi.org/10.1007/s11483-007-9043-6
- Tan, F., P. H. M. Leung, Z. B. Liu, Y. Zhang, L. D. Xiao, W. W. Ye, X. Zhang, L. Yi and M. Yang. 2011. A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibodyimmobilized nanoporous membrane. Sensors and Actuators B 159:328-335. https://doi.org/10.1016/j.snb.2011.06.074
- Tetala, K. K., J. W. Swarts, B. Chen, A. E. Janssen and T. A. van Beek. 2009. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab on a Chip 9(14):2085-92. https://doi.org/10.1039/b822106e
- Varshney, M., Y. Li, B. Srinivasan and S. Tung. 2007. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B 128:99-107. https://doi.org/10.1016/j.snb.2007.03.045
- Vijayendran, R. A., K. M. Motsegood, D. J. Beebe and D. E. Leckband. 2003. Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824-1828. https://doi.org/10.1021/la0262250
- Wang, S. Q., F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. C. F. Lp, B. Sridharan, U. A. Gurkan and U. Demirci. 2012. Portable microfluidic chip for detection of Escherichia coli in produce and blood. International Journal of Nanomedicine 7:2591-2600.
- Whitesides, G. M.. 2006. The origins and the future of microfluidics. Nature 442(7101):368-373. https://doi.org/10.1038/nature05058
- Wielhouwer, E. M., S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, J. Westerweel, J. Oonk, E. X. Vrouwe, W. Buesink, H. G. J. vanMil, J. Chicken, R. van't Oever and M. K. Richardson. 2011. Zebrafish embryo development in a microfluidic flow-through system. Lab on a Chip 11:1815-1824. https://doi.org/10.1039/c0lc00443j
- Xia, Y., and G. M. Whitesides. 1998. Soft Lithography. Angewandte Chemie International Edition in English 37(5):551-575.
- Yamaguchi, N., M. Torii, Y. Uebayashi and M. Nasu. 2011. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting. Applied and Environmental Microbiology 77(4):1536-1539. https://doi.org/10.1128/AEM.01765-10
- Yang, M., S. Sun, Y. Kostov and A. Rasooly. 2010. Lab-on-achip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab on a Chip 10:1011-1017. https://doi.org/10.1039/b923996k
- Yaralioglu, G. G., I. O. Wygant, T. C. Marentis and T. Khuri-Yakub. 2004. Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical Chemistry 76:3694-3698. https://doi.org/10.1021/ac035220k
- Zhang, R. Q., S. L. Liu, W. Zhao, W. P. Zhang, X. Yu, Y. Li, A. J. Li, D. W. Pang and Z. L. Zhang. 2013. A Simple Pointof-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry 85(5):2645-2651. https://doi.org/10.1021/ac302903p
- Zhao, C. and C. Yang. 2011. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 32:629-637. https://doi.org/10.1002/elps.201000493
Cited by
- Ensuring food safety: Quality monitoring using microfluidics vol.65, 2017, https://doi.org/10.1016/j.tifs.2017.04.015