DOI QR코드

DOI QR Code

Applications of Microfluidics in the Agro-Food Sector: A Review

  • Received : 2016.04.16
  • Accepted : 2016.05.19
  • Published : 2016.06.01

Abstract

Background: Microfluidics is of considerable importance in food and agricultural industries. Microfluidics processes low volumes of fluids in channels with extremely small dimensions of tens of micrometers. It enables the miniaturization of analytical devices and reductions in cost and turnaround times. This allows automation, high-throughput analysis, and processing in food and agricultural applications. Purpose: This review aims to provide information on the applications of microfluidics in the agro-food sector to overcome limitations posed by conventional technologies. Results: Microfluidics contributes to medical diagnosis, biological analysis, drug discovery, chemical synthesis, biotechnology, gene sequencing, and ecology. Recently, the applications of microfluidics in food and agricultural industries have increased. A few examples of these applications include food safety analysis, food processing, and animal production. This study examines the fundamentals of microfluidics including fabrication, control, applications, and future trends of microfluidics in the agro-food sector. Conclusions: Future research efforts should focus on developing a small portable platform with modules for fluid handling, sample preparation, and signal detection electronics.

Keywords

References

  1. Adami, A., A. Mortari, E. Morganti and L. Lorenzelli. 2016. Microfluidic sample preparation methods for the analysis of milk contaminants. Journal of Sensors 2016:2385267.
  2. Ahmad, B., E. Stride and M. Edirisinghe. 2012. Calcium Alginate Foams Prepared by a Microfluidic T-Junction System: Stability and Food Applications. Food and Bioprocess Technology 5(7):2848-2857. https://doi.org/10.1007/s11947-011-0650-3
  3. Arevalo, F. J., A. M. Granero, H. Fernandez, J. Raba and M. A. Zon. 2011. Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 83:966-973. https://doi.org/10.1016/j.talanta.2010.11.007
  4. Atalay, Y. T., S. Vermeir, D. Witters, N. Vergauwe, B. Verbruggen, P. Verboven, B. M. Nicolaï and J. Lammertyn. 2011. Microfluidic analytical systems for food analysis. Trends in Food Science & Technology 22:386-404. https://doi.org/10.1016/j.tifs.2011.05.001
  5. Babrak, L., A. Lin, L. H. Stanker, J. McGarvey and R. Hnasko. 2015. Rapid Microfluidic Assay for the Detection of Botulinum Neurotoxin in Animal Sera. Toxins 8(1):13.
  6. Bhatta, D., M. M. Villalba, C. L. Johnson, G. D. Emmerson, N. P. Ferris, D. P. King and C. R. Lowe. 2012. Rapid detection of foot-and-mouth disease virus with optical microchip sensors. Procedia Chemistry 6:2-10. https://doi.org/10.1016/j.proche.2012.10.124
  7. Becker, H. and C. Gartner. 2008. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry 290:89-111.
  8. Beyor, N., T. S. Seo, P. Liu and R. A. Mathies. 2008. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomedical Microdevices 10(6):909-917. https://doi.org/10.1007/s10544-008-9206-3
  9. Buchegger, W., C. Wagner, B. Lendl, M. Kraft and M. Vellekoop. 2011. A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy. Microfluidics and Nanofluidics 10:889-897. https://doi.org/10.1007/s10404-010-0722-0
  10. Campbell, G. M. and E. Mougeot. 1999. Creation and characterization of aerated food products. Trends in Food Science & Technology 10:283-296. https://doi.org/10.1016/S0924-2244(00)00008-X
  11. Chang, H. C. 2006. Electro-kinetics: a viable micro-fluidic platform for miniature diagnostic kits. The Canadian Journal of Chemical Engineering 84(2):146-160. https://doi.org/10.1139/v05-242
  12. Choudhury, D., D. van Noort, C. Iliescu, B. Zheng, K. L. Poon, S. Korzh, V. Korzh and H. Yu. 2012. Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development. Lab on a Chip 12:892-900. https://doi.org/10.1039/C1LC20351G
  13. Chen, J., D. Chen, Y. Xie, T. Yuan and X. Chen. 2013. Progress of Microfluidics for Biology and Medicine. Nano-Micro Letters 5(1):66-80. https://doi.org/10.1007/BF03354852
  14. Choi, E., B. Kim and J. Park. 2009. High-throughput microparticle separation using gradient traveling wave dielectrophoresis. Journal of Micromechanics and Microengineering 19:125014. https://doi.org/10.1088/0960-1317/19/12/125014
  15. Cuadros, T. R., O. Skurtys and J. M. Aguilera. 2012. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydrate Polymers 89(4):1198-1206. https://doi.org/10.1016/j.carbpol.2012.03.094
  16. Dong, Y., Y. Xu, Z. Liu, Y. Fu, T. Ohashi, Y. Tanaka, K. Mawatari and T. Kitamori. 2011. Rapid screening swine foot-and-mouth disease virus using micro-ELISA system. Lab on a Chip 11(13):2153-2155. https://doi.org/10.1039/c0lc00678e
  17. Galarreta, B. C., M. Tabatabaei, V. Guieu, E. Peyrin and F. Lagugne-Labarthet. 2013. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Analytical and Bioanalytical Chemistry 405:1613-1621. https://doi.org/10.1007/s00216-012-6557-7
  18. Guo, L., J. Feng, Z. Fang, J. Xu and X. Lu. 2015. Application of microfluidic "lab-on-a-chip" for the detection of mycotoxins in foods. Trends in Food Science & Technology 46:252-263. https://doi.org/10.1016/j.tifs.2015.09.005
  19. Guo, Y., X. Liu, X. Sun, Y. Cao and X. Y. Wang. 2015. A PDMS microfluidic impedance immunosensor for sensitive detection of pesticide residues in vegetable real samples. International Journal of Electrochemical Science 10:4155-4164.
  20. Hamon, M. O. A. Oyarzabal and J. W. Hong. 2013. Nanoliter/picoloter scale fluidic systems for food safety. In: Advances in applied nanotechnology for agriculture. eds. B. Park and M. Appell. pp. 145-165 Washington, DC: ACS.
  21. He, B., B. J. Burke, X. Zhang, R. Zhang and F. E. Regnier. 2001. A picoliter-volume mixer for microfluidic analytical systems. Analytical Chemistry 73: 1942-1947. https://doi.org/10.1021/ac000850x
  22. Hervas, M., M. A. Lopez and A.lberto Escarpa. 2009. Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst 134:2405-2411. https://doi.org/10.1039/b911839j
  23. Hervas, M., M. A. Lopez and A.lberto Escarpa. 2011. Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136: 2131-2138. https://doi.org/10.1039/c1an15081b
  24. Hu, H., Y. Deng and H. Zou. 2013. Microfluidic smectitepolymer nanocomposite strip sensor for aflatoxin detection. IEEE Sensors Journal 13:1835-1839. https://doi.org/10.1109/JSEN.2013.2242057
  25. Huang, C. W., Y. T. Lin, S. T. Ding, L. L. Lo, P. H. Wang, E. C. Lin, F. W. Liu and Y. W. Lu. 2015. Efficient SNP discovery by combining microarray and lab-on-a-chip data for animal breeding and selection. Microarrays 4:570-595. https://doi.org/10.3390/microarrays4040570
  26. Karsunke, X. Y. Z. and R. Niessner. 2009. Development of a multichannel flow-through chemiluminescence microarray chip for parallel calibration and detection of pathogenic bacteria. 2009. Analytical and Bioanalytical Chemistry 395:1623-1630. https://doi.org/10.1007/s00216-009-2905-7
  27. Kempisty, B., R. Walczak, P. Antosik, P. Sniadek, M. Rybska, H. Piotrowska, D. Bukowska, J. Dziuban, M. Nowicki, J. M. Jaskowski, M. Zabel and K. P. Brussow. 2014. Microfluidic Method of Pig Oocyte Quality Assessment in relation to Different Follicular Size Based on Lab-on-Chip Technology. BioMed Research International 2014:467063.
  28. Laporte, M., A. Montillet, D. D. Valle, C. Loisel and A. Riaublanc. 2016. Characteristics of foams produced with viscous shear thinning fluids using microchannels at high throughput. Journal of Food Engineering 173:25-33. https://doi.org/10.1016/j.jfoodeng.2015.10.032
  29. Lee, C. Y., C. L. Chang, Y. N. Wang and L. M. Fu. 2011. Microfluidic mixing: a review. International Journal of Molecular Sciences 12:3263-3287. https://doi.org/10.3390/ijms12053263
  30. Li, P., Z. Zhang, Q. Zhang, N., Zhang, W. Zhang, X. Ding and R. Li. 2012. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology. Electrophoresis 33:2253-2265. https://doi.org/10.1002/elps.201200050
  31. Liu, R. H., M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe. 2000., Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical systems 9:190-197. https://doi.org/10.1109/84.846699
  32. Liu, R. H., R. Lenigk, S. R. L. Druyor, J. Yang and P. Grodzinski. 2003. Hybridization enhancement using cavitation microstreaming. Analytical Chemistry 75:1911-1917. https://doi.org/10.1021/ac026267t
  33. Lliescu, C., H. Taylor, M. Avram, J. Miao and S. Franssila. 2012. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505. https://doi.org/10.1063/1.3689939
  34. Luka, G., A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani and M. Hoorfar. 2015. Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors 15:30011-30031. https://doi.org/10.3390/s151229783
  35. Ma, R., L. Xie, C. Han, K. Su, T. Qiu, L. Wang, G. Huang, W. Xing, J. Qiao, J. Wang and J. Cheng. 2011. In vitro fertilization on a single-oocyte positioning system integrated with motile sperm selection and earlyembryo development. Analytical Chemistry 83(8):2964-2970. https://doi.org/10.1021/ac103063g
  36. Mairhofer, J., K. Roppert and P. Ertl. 2009. Microfluidic systems for pathogen sensing: A review. Sensors 9:4804-4823. https://doi.org/10.3390/s90604804
  37. Mao, X. and T. J. Huang. 2012. Microfluidic diagnostics for the developing world. Lab on a Chip 12:1412-1416. https://doi.org/10.1039/c2lc90022j
  38. Mark, D., S. Haeberle, G. Roth, F. Stetten and R. Zengerle. 2009. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chemical Society Reviews 39:1153-1182.
  39. McGrath, J. S., J. Quist, J. R. T. Seddon, S. C. S. Lai, S. G. Lemay and H. L. Bridle. 2016. Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe. PLoS ONE 11(3):e0150438. https://doi.org/10.1371/journal.pone.0150438
  40. Melin,J., G. Gimenez, N. Roxhed, W. van der Wijngaart and G. Stemme. 2004. A fast passive and planar liquid sample micromixer. Lab on a Chip 4:214-219. https://doi.org/10.1039/B314080F
  41. Neethirajan, S., I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal and F. Lin. 2011. Microfluidics for food, agriculture and biosystems industries. Lab on a Chip 11(9):1574-1586. https://doi.org/10.1039/c0lc00230e
  42. Niu, X. and Y. K. Lee. 2003. Efficient spatial-temporal chaotic mixing in microchannels. Journal of Micromechanics and Microengineering 13:454-462. https://doi.org/10.1088/0960-1317/13/3/316
  43. Novo, P., G. Moulas, D. M. F. Prazeres, V. Chu and J. P. Conde. 2013. Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sensors and Actuators B 176:232-240. https://doi.org/10.1016/j.snb.2012.10.038
  44. Ramadan, Q. and M. A. M Gijs. 2012. Microfluidic applications of functionalized magnetic particles for environmental analysis: Focus on waterborne pathogen detection. Microfluidics and Nanofluidics 13(4):529-542. https://doi.org/10.1007/s10404-012-1041-4
  45. Santis, R. D., A. Ciammaruconi, G. Faggioni, S. Fillo, B. Gentile, E. D. Giannatale, M. Ancora and F. Lista. 2011. High throughput MLVA-16 typing for Brucella based on the microfluidics technology. BMC Microbiology 11:60. https://doi.org/10.1186/1471-2180-11-60
  46. Sekhon, B. S.. 2012. Nanoprobes and their applications in veterinary medicine and animal health. Research Journal of Nanoscience and Nanotechnology 2(1):1-16. https://doi.org/10.3923/rjnn.2012.1.16
  47. Skurtys, O. and J. M. Aguilera. 2008. Applications of Microfluidic Devices in Food Engineering. Food Biophysics 3(1):1-15. https://doi.org/10.1007/s11483-007-9043-6
  48. Tan, F., P. H. M. Leung, Z. B. Liu, Y. Zhang, L. D. Xiao, W. W. Ye, X. Zhang, L. Yi and M. Yang. 2011. A PDMS microfluidic impedance immunosensor for E. coli O157:H7 and Staphylococcus aureus detection via antibodyimmobilized nanoporous membrane. Sensors and Actuators B 159:328-335. https://doi.org/10.1016/j.snb.2011.06.074
  49. Tetala, K. K., J. W. Swarts, B. Chen, A. E. Janssen and T. A. van Beek. 2009. A three-phase microfluidic chip for rapid sample clean-up of alkaloids from plant extracts. Lab on a Chip 9(14):2085-92. https://doi.org/10.1039/b822106e
  50. Varshney, M., Y. Li, B. Srinivasan and S. Tung. 2007. A label-free, microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors and Actuators B 128:99-107. https://doi.org/10.1016/j.snb.2007.03.045
  51. Vijayendran, R. A., K. M. Motsegood, D. J. Beebe and D. E. Leckband. 2003. Evaluation of a three-dimensional micromixer in a surface-based biosensor. Langmuir 19:1824-1828. https://doi.org/10.1021/la0262250
  52. Wang, S. Q., F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. C. F. Lp, B. Sridharan, U. A. Gurkan and U. Demirci. 2012. Portable microfluidic chip for detection of Escherichia coli in produce and blood. International Journal of Nanomedicine 7:2591-2600.
  53. Whitesides, G. M.. 2006. The origins and the future of microfluidics. Nature 442(7101):368-373. https://doi.org/10.1038/nature05058
  54. Wielhouwer, E. M., S. Ali, A. Al-Afandi, M. T. Blom, M. B. O. Riekerink, C. Poelma, J. Westerweel, J. Oonk, E. X. Vrouwe, W. Buesink, H. G. J. vanMil, J. Chicken, R. van't Oever and M. K. Richardson. 2011. Zebrafish embryo development in a microfluidic flow-through system. Lab on a Chip 11:1815-1824. https://doi.org/10.1039/c0lc00443j
  55. Xia, Y., and G. M. Whitesides. 1998. Soft Lithography. Angewandte Chemie International Edition in English 37(5):551-575.
  56. Yamaguchi, N., M. Torii, Y. Uebayashi and M. Nasu. 2011. Rapid, semiautomated quantification of bacterial cells in freshwater by using a microfluidic device for on-chip staining and counting. Applied and Environmental Microbiology 77(4):1536-1539. https://doi.org/10.1128/AEM.01765-10
  57. Yang, M., S. Sun, Y. Kostov and A. Rasooly. 2010. Lab-on-achip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab on a Chip 10:1011-1017. https://doi.org/10.1039/b923996k
  58. Yaralioglu, G. G., I. O. Wygant, T. C. Marentis and T. Khuri-Yakub. 2004. Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical Chemistry 76:3694-3698. https://doi.org/10.1021/ac035220k
  59. Zhang, R. Q., S. L. Liu, W. Zhao, W. P. Zhang, X. Yu, Y. Li, A. J. Li, D. W. Pang and Z. L. Zhang. 2013. A Simple Pointof-Care Microfluidic Immunomagnetic Fluorescence Assay for Pathogens. Analytical Chemistry 85(5):2645-2651. https://doi.org/10.1021/ac302903p
  60. Zhao, C. and C. Yang. 2011. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel. Electrophoresis 32:629-637. https://doi.org/10.1002/elps.201000493

Cited by

  1. Ensuring food safety: Quality monitoring using microfluidics vol.65, 2017, https://doi.org/10.1016/j.tifs.2017.04.015