References
- A. Azhand, J. F. Totz and H. Engel, Three-dimensional autonomous pacemaker in the photosensitive Belousov-Zhabotinsky medium, Europhysics Letters 108 (2014), no. 1, 10004. https://doi.org/10.1209/0295-5075/108/10004
- E. Casas, L. A. Fernandez, and J. Yong, Optimal control of quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. 125 (1995), 545-565. https://doi.org/10.1017/S0308210500032674
- R, J, Field and R. M. Noyers, Oscillations in chemical systems V, Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction, J. Am. Chem. Soc. 96 (1974), 2001-2006. https://doi.org/10.1021/ja00814a003
- M. R. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM J. Control Optim. 46 (2007), no. 3, 775-791. https://doi.org/10.1137/050645415
- K. H. Hoffman and L. Jiang, Optimal control of a phase field model for solidification, Numer. Funct. Anal. and Optimiz. 13 (1992), no. 1&2, 11-27. https://doi.org/10.1080/01630569208816458
- S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256 (2001), 45-66. https://doi.org/10.1006/jmaa.2000.7254
- S.-U. Ryu, Optimal control for Belousov-Zhabotinskii reaction model. East Asian Math. J. 31 (2015), no. 1, 109-117. https://doi.org/10.7858/eamj.2015.011
- S.-U. Ryu, Optimality conditions for optimal control governed by Belousov-Zhabotinskii reaction model, Commun. Korean Math. Soc. 30(2015), no. 3, 327-337. https://doi.org/10.4134/CKMS.2015.30.3.327
- A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin 2010.
- Y. You, Global Dynamics of the Oregonator System, Math. Methods Appl. Sci., 35 (2012), no. 4, 398-416. https://doi.org/10.1002/mma.1591
- V. S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes and H. Engel, Global dontrol of spiral wave dynamics in an excitable domain of circular and elliptical shape, Phys. Rev. Lett. 92 (2004), 018304. https://doi.org/10.1103/PhysRevLett.92.018304