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OPTIMAL CONTROL FOR SOME REACTION DIFFUSION
MODEL

SANG-UK Ryu

ABSTRACT. This paper is concerned with the optimal control problem for
some reaction diffusion model. That is, we show the existence of the global
weak solution for the Field-Noyes model. We also show the existence of
the optimal control.

1. Introduction

In this paper we are concerned with the following optimal control problem:
(P) minimize J(u)

with the cost functional J(u) of the form
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where y = y(u), p = p(u) and w = w(u) are governed by the Field-Noyes model

%:a%Jr%(qw_wary_f) in I x (0,7],
%:b%-i,—y—p in I (0,T],
%:d%-y%(—qw—ywﬁ-cp‘*‘u) in I x(0,7], (L.1)
%(W):%(z,w:o on (0,7,

%(W):%(u):o on (0,7,

ow ow

%(O,t):%(l,t)zo on (0,7,
y(z,0) = yo(z), p(z,0) =po(z), w(z,0)=wo(x) in I.

Here, I = (0,1) is a bounded interval in R. y(x,t) denotes the concentrations
of HBrO; , p(z,t) the concentrations of Ce*t and w(x,t) the concentrations
of Br~ at z € I and a time ¢t € [0,T], respectively. a > 0, b > 0, and d > 0
represent the diffusion rate of each species. Finally, 6, €, ¢, ¢ and ~ are positive
constants. The term u(x,t) denotes the control fuction at € I and a time
te [0,7] (1], [9), [11]).

The model (1.1) was introduced by Field and Noyes is the simple mathe-
matical model for describing the complicated mechanism from a global point
of view([3], [9]). In [9] and [10], the authors studied for global dynamics of the
Field-Noyes model including the global attractor and exponential attractor.

Many authors have been studied the optimal control problem for the reac-
tion diffusion model([2], [4], [5]). In [6], the optimal control problem for the
chemotaxis model studied. Ryu([7], [8]) studied the optimal control problem
for B-Z reaction model of two variables. In this paper, we show the existence
of the global weak solution of (1.1). We also show the existence of the optimal
control.

The paper is organized as follows. Section 2 show the existence of the global
weak solutions. In Section 3 we show the existence of the optimal control.

Notations: For simplicity, we shall use a universal constant C' to denote
various constants which are determined in each occurrence in a specific way by
a,b,c,d, €, 6,7, . In a case when C depends also on some parameter, say 0, it
will be denoted by Cj.
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2. Global weak solutions

Let us set three product Hilbert spaces V C H =H' C V' as
YV =HYI)x HY(I) x H'(I),
H = L*(I) x L*(I) x L*(I),
V' = (H'(I)) = (H'(I)) x (H'(I))"

Also we set a symmetric bilinear form on ¥V x V x V:

VY — (AL/2 1/2 1/2 1/2
G,(K Y) - (A yaA )L2(I) + (AZ P A2 p)L?(I)
1/2 1/2 g q
+ (A3 "w, Ay w)LQI), =|p|,Y=[p]|e€V,

w w
where A; = —aaa—; +e b Ay =-b 82 + 1, and Az = 8 2 —|—5 lg with the
same domain D(4;) = H2(I) = {z € H2(I), am( ) = ( ) =0} (1 =1,2,3).

Obviously, the form satisfies

a(Y, V)| < MY ||[Y [y, Y,Y eV, (a.i)
oV,Y)Zml|Y3, VeV (a.ii)

with some m and M > 0. This form then defines a linear isomorphism A =
A 0 0
0 Ay 0 | from V to V', and the part of A in H is a positive definite
0 0 As

self-adjoint operator in H. Let us set the space of initial values as

Yo
/C:{ po | € H:0 < yo € L2(1), 0< po € L2(1), ngoeLQ(I)}.
Wo

We also set the control space U = L?(0,T;H) and

0
Upa = { 0] el;ue LQ(O,T;LQ(I))7U >0, HUHLQ(O,T;Lz(I)) < C}

u

Then (1.1) is formulated as the following problem

dy
E—i_AY FY)+U, 0<t<T, (2.1)
Y(0) =Y
Yo 0
in the space V'. Here, Yy is defined by Yo = | po | and U = 0

wo 5 1y
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F(:):V — V' is the mapping

e quw —yw + 2y — )
F(Y) = y (2.2)
6‘1( —yw + cp)

and F(-) satisfies the following conditions:
(f.i) For each n > 0, there exists an increasing continuous function ¢, :
[0,00) — [0, 00) such that

IE@) v < allYllv + ¢q([[Y]ln), Y €V, ae (0,T);

(f.ii) For each n > 0, there exists an increasing continuous function 4, :
[0,00) — [0, 00) such that

IE(Y) = FY)lly <nllY =Yy
+ (Yl + 1Y v + DY 1 + Y)Y = Y3, Y, Y €V, ae (0,T).
Indeed, it is seen as in [7] that

92l e oy < nllylle oy + Cn”ZIH%Z(z), ye H'(I)

and

lywli oy <Cliywll 3 4,

3 1
§C||?J||L2(I)Hw||f2(1)||w||}4{1(1)

4

3 3
<nllwlenm + Co(Iylz ol )

<nllwllis ) + Co (930 + Il ), vow e HY(D)

Hence, the condition (f.i) is fulfilled.
On the other hand, for §,y,w,w € H(I),

17° = v*lczrnyy < CIT — v ll2ny
< C (19l e cry + 1l Lo )17 = yll2(1)
< C(I9llarry + lllar )15 = yll2c)

and
g0 —ywl| (1))
<C (1@ = »)wlra + Iy = w)lzan))
<C(Ill o) 17 = wllzz) + Iyl 10 = wlzzen)

<C ([l + I1ylle ) (19 = yllze oy + 1@ = wllz2(r)) -
Hence, the condition (f.ii) is fulfilled.

We then obtain the local existence of the weak solution ([6]).
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Theorem 2.1. Let (a.i), (a.di), (f.i), and (f.ii) be satisfied. Then, for any
Yo € K and U € Uyq, (2.1) has a unique weak solution

Y € H'(0,T(Yo, U); V') NC([0,T(Yo,U)); 1) N L*(0,T(Yo,U); V).
Here, T(Yy,U) > 0 is determined by (Yol and [|U|| 220,12 -

Theorem 2.2. For any Yy € K and U € Uyq, the weak solution Y of (2.1) is
nonnegative. Therefore Y is a weak solution of (1.1).

Proof. We show nonnegativity of solutions, which is proved by the same method
in Yagi([9]). We consider an auxiliary problem

ay - =
—r TAY=FY)+U, 0<t<T, (2.3)
Y (0) = Yo.

B e quw —yw + 2y — )
Here, F(Y) = lyl is modified nonlinear operator to
(5‘1( —yw + c,o)

(2.2). Then, we also know that Y = € HY(0,T(Yo,U); V)NL%(0,T(Yo,U); V).

SRS

Let us verify first that p > 0 by the truncation method. Consider H(p) is C!-1
cutoff function for —oo < p < co given by H(p) = é for —oo < p <0 and
H(p) = 0 for 0 < p < oo. Since p € L?(0,T(Yy,U); H(I)), we see H'(p) €
L2(0,T(Yy,U); HY(I)).

Therefore, if we take H'(p) as the test function for the second equation in
(2.3), we obtain

('), H' (p(t))) (rr (1)) 17 (1)

0°p
= _— ul — p H/ o
(b5 + 1ol =5 <p<t>>>(H1(I)),,H1(I)

(Il =2 H (1)

(T8 1(pe)
=0 + I5.

(HY(D)", H (I (HY (D))", H(I)

Since I, = —b [ |20 125 we see that 1) < 0. Since H'(p) < 0, H'(p)p > 0
, it follows that Is < 0. Therefore, if we put

!
vlt) = [ Hp®)s, 0<t<T(%.0)
0
then we see

000 = (5O TG0 ap .1y < 0.

Therefore, ¥(t) < ¥(0) for 0 < ¢t < T (Yo, U, ). Thus, ¥(0) = 0 implies 9 (t) = 0,
that is, p(t) > 0 for 0 < ¢t < T(Yo, U).
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Let us verify that w > 0. Similarily, if we use H(w) and the third equation
in (2.3), then we obtain from u > 0 that

l l
@WWHWWWMWWmmSmWWmAfmwmﬁﬂﬂmmAHWW$

If we put ¢(t) = fé H(w(t))dz,0 <t < T(Yy,U), then it is seen that

d
@qﬁ(t) = (w'(t), H' (0 (t))) (e (nyy 1 (1) < Clll e (o (t)-

Thus we obtain that

MﬂéﬂmwMCAHMﬂMWﬂﬁ

< ¢(O)ea:p(CT(Yo,U)/O 1) |2 1yds), 0 <t < T(¥e,U).

Since § € L*(0,T(Yy,U); H'(I)), we obtain ¢(t) = 0, that is, w > 0 for 0 <t <

T(Yy,U).
Finally, we show that § > 0. Similarily, we obtain

!
'), H' (G®))) ey, iy < 2(17l poe ) + HU_’||L°°(I))/O H(y)dz

l
sawmwﬁwmmwgéﬂ@m.

If we put n(t) = fol H(y(t))dz,0 <t < T (Yo, U), then it is seen that

d _ _ _ _
10 = @), H' (5(t)) oy iy < C10ll @y + @)z y)n(t).
Thus we obtain that

) < n@ean(C [ (506w + 15 1))

< 0(0eap(CTW.U) [ (1566) s + 186 ) ds). 0 < ¢ <T(.0),

Since g, w € L2?(0,T(Yp,U); HY(I)), we obtain n(t) = 0, that is, § > 0 for
0<t<T(Yo,U).

Therefore, we conclude that F(Y) = F(Y). Thus we see that Y is a local
solution of (2.1). By the uniqueness, we see that Y =Y for 0 < t < T (Y, U).
Therefore, Y (t) > 0 for 0 < t < T(Yp, U). Finally, we can show that T(Yy, U) =
T(Yy,U) by a contradiction as in [9]. O

Theorem 2.3. For any Yo € K and U € U,q, (2.1) has a unique global weak
solution

0<Y e HY0,T;V)NC(0,T];H) N L*(0,T; V).
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Yy
Proof. Let Y = | p | be any local weak solution as in Theorem 2.1 on an
w
interval [0, S]. Then, if we use the method as in [9], we obtain the following
estimates

l

l
- [ W+ Fw)de+ u/ (v° + &p* + w?)dz
0 0

oo [ 2+ Yo <o [ stan, @

z
where € = 4c?¢~107, = min{2¢71,1,6 ¢} and v = min{a, b, d}.
If we solve the following differential inequality
l

l
o | W Hw)de + u/ (* +&p° + w)dz < C(1+ |lullZ(p),
0 0

we have

min{L, Y |7 0,5:90) < IWOT2r) + ENpONL2cr) + w721y
< e " (llyollZ2(ry +€llpollZacry + lwollizgry) + C (L + ullZzomir2(ry)- (25)

If we use (2.4), we obtain
¢
k‘/o (ly () 1y + €l Ny + s r))ds

T
§(||y0||%2(1)+§||P0||2L2(1)+||U’0H2L2(1))+C/0 1+ [lullF2p)ds, 0<t<S,
(2.6)

where k = min{u,v}. Thus, we take t; € (0,.5) so that y(t1),p(t1),w(t1) €
Lz(I) By (25) and (26), we see ||y||L2(t1,S;Hl(I))ﬂLx(tl,S;L2(I))u
ol 22 (¢, 551 (1)L (t1,5:22(1))> and [|wl|L2 (¢, 5300 (1)L (41,5;L2(1)) do not de-
pend on S.  As a consequence, ||y|lmi(t,, sy Pl s (1)),
lwller 0,550y, and lylleen,siizzays lellogu,sizamy, Twlen.syram) do
not depend on S. This shows that y, p, w can be extended as a weak solution
beyond the S. By the standard argument on the extension of the weak solutions,
we can then prove the desired result. O

Moreover, we also obtain the stability result with respect to the control.

Y1 Y2
Theorem 2.4. For any Yy € K, let Y1 = | p1 | and Yo = | p2 | be the
wq w2
0 0
solutions with respect to Uy = 0 ,Ug = 0 € Uyq. Then, we
1

5_1111 0 " ug
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have the following estimate
1Y1(t) = Ya@)llZoe 0,720y < Cllua(t) = w2220 7521 (2.7)
for allt €10,T).

Proof. Let & = u1 —ug, Yy =y1 — Y2, p = p1 — p2 and W = wy; — wy. Then g, p
and w satisfy

% _a%+%g: 29+ i —wng— o~ G+ 92)i) i Tx (0,T],
% 20 ii=5 wmixT)

% a‘;g) gw:%(_wlg_waJrcﬁm) in I x (0,7,

%(O,t) %(Lt) =0 on (0,7], (28)
%(Oﬂf) = %(Z,t) =0  on (0,71,

%@,t): %(l,t) 0 on (0,T],

g(x,0) =0, p(z,0)=0, @w(x,0)=0 in 1.
Taking the scalar product with § to the first equation of (2.8), we have

1d, . my, .
5@“9”%’2(1)) + 7”9”%{1(1) (2.9)

<C(llyallFcry + lv2llzr ) + ol F ey + 1)
X (HQH%Q(I)) + H1D||2L2(1)),
where m; = min{a,e"'}. Taking the scalar product with 5 to the second
equation of (2.8), we obtain
1d, . ma, -
§£||P||2L2(1)) + 7||P||%11(1) <972 (2.10)

where ms = min{b, 1}. Finally, we take the scalar product with @ to the third
equation of (2.8), we have

1d, . ms, -
5@”“’”%(1)) + 7”“’”%{1(1) (2.11)

<O([lwillFcry + ly2llFn ey +1)
< (190220 + 1001720y + 1817 2(r)) + CllalZ2rys
where mg = min{d, g6 ~'}. From (2.9), (2.10) and (2.11), we have

d ~ - i
Y I+ mIY IS < OIS + 1Y2[5 + DIV IR + ClalZa ),
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where m = min{my,mo, m3}. Using Gronwall’s inequality, we obtain that

t
T+ m [ 170
< C'WH%?(O,T;LQ(I))efOT CUMHIAIY2 (s < gy — ual|Z 20 7121y
for all ¢ € [0,T]. Hence, we otain (2.7). O

3. Existence of the optimal control

The problem (P) is obviously formulated as follows:

(P) minimize J(U),

where - r
IO = [ O) Vil 4y [0, U €t
0 0
Ya
Here, Yy = [ pa | is a fixed element of L?(0, T; V) with yg, pa , wa € L*(0,T; H'(I)).
wy

7 is a positive constant.

Theorem 3.1. There exists an optimal control U € Uyq for (P) such that
J(U) = min J(U).
U€EUqq
Proof. Let {U,} C Uyq be a minimizing sequence such that
i, TUn) = e, TO):
Since {U,} is bounded in L?*(0,T;H), we can assume that U, — U weakly in

L?(0,T;H). For simplicity, we will write Y, instead of the solution Y (U,) of
(2.1) corresponding to U,. Using the boundedness of Y;,, we infer that Y,, =

Yn Y
on | =Y =1 p | weakly in L2(0,T; V)N H*(0,T;V"). Since V is compactly
W, w
embedded in H, we have
Y,, — Y strongly in L*(0,T;H). (3.1)
Now, we will show that Y is a solution to (2.1) with the control U. For any
?1
® = | ¢2 | € L%0,T;V), we consider
®3

T T
/ (Y(8), (1) )yt + / (AY, (), B(t))yr it
0 0

:/ (F(Yn(t)),@(t»w,ydt—i—/ (Un(t), (t))vr vdt.
0 0
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We first observed that for any ¢; € L%([0,T]); H(I)),
T
/0 (o — 77, G1) (a (0)y HY (1) At

< C(Hyn||L°°(O,T;L2(I)) + Hy||L°°(O,T;L2(I))) yn = yll 220,752 () 161l L2 0,751 (1)) -
From (3.1), we have

y2 — §* weakly in L?(0,T; (H'(I))").

Since

(YnWn — YW, G1) (H1 (1)), H (I)

l
< ([t~ galdz) o1~
0

< C(||wn||L2(I) + H§||L2(1)) (Ilyn — Ullz2ry + llwn — @||L2(1))||¢1||H1(I)
we obtain

T
/ (YnWn — YW, $1) (1 (1)), 1 (1) dt
0
<C([lwpll o= (0,r;22(r)) + 17l oo 0, 7:02(1))

X (lyn = Gll20,1302(1)) + lwn — ©ll 20,75 02(0))) |61 | 20,7518 (1) -
From (3.1), we have

Ynwy — g weakly in L2(0,T; (H*(I))").

?1
For any ® = | ¢ | € L?(0,7T;V), we obtain
®3

/0 Y (t), ®(t))yr vt + /0 (AY (1), @(t))yr,vdt

T T
:/<mexﬂmwwﬁ+/<wm@®wwm
0 0

This then shows that Y (t) satisfies the equation of (2.1) for almost all t € (0,7)
Therefore, by the uniqueness of the solution of (2.1), Y =Y (U).

Since Y,, — Yy is weakly convergent to Y — Yy in L%(0,T; V), we have:

< T < o
gafp, /() < J(U) < e inf J(U.) = min J(U)

Hence, J(U) = min J(U). O
Uelaa



(1]

(2]

(3]

(4]
(5]
[6]
[7]
(8]
(9]
(10]

(11]

OPTIMAL CONTROL FOR SOME REACTION DIFFUSION MODEL 397

References

A. Azhand, J. F. Totz and H. Engel, Three-dimensional autonomous pacemaker in the
photosensitive Belousov-Zhabotinsky medium, Europhysics Letters 108 (2014), no. 1,
10004.

E. Casas, L. A. Ferndndez, and J. Yong, Optimal control of quasilinear parabolic equa-
tions, Proc. Roy. Soc. Edinburgh Sect. 125 (1995), 545-565.

R, J, Field and R. M. Noyers, Oscillations in chemical systems V, Quantitative expla-
nation of band migration in the Belousov-Zhabotinskii reaction, J. Am. Chem. Soc. 96
(1974), 2001-2006.

M. R. Garvie and C. Trenchea, Optimal control of a nutrient-phytoplankton-zooplankton-
fish system, SIAM J. Control Optim. 46 (2007), no. 3, 775-791.

K. H. Hoffman and L. Jiang, Optimal control of a phase field model for solidification,
Numer. Funct. Anal. and Optimiz. 13 (1992), no. 1&2, 11-27.

S.-U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl.
256 (2001), 45-66.

S.-U. Ryu, Optimal control for Belousov-Zhabotinskii reaction model. East Asian Math.
J. 81 (2015), no. 1, 109-117.

S.-U. Ryu, Optimality conditions for optimal control governed by Belousov-Zhabotinskii
reaction model, Commun. Korean Math. Soc. 30(2015), no. 3, 327-337.

A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag,
Berlin 2010.

Y. You, Global Dynamics of the Oregonator System, Math. Methods Appl. Sci., 35
(2012), no. 4, 398-416.

V. S. Zykov, G. Bordiougov, H. Brandtstadter, I. Gerdes and H. Engel, Global dontrol of
spiral wave dynamics in an excitable domain of circular and elliptical shape, Phys. Rev.
Lett. 92 (2004), 018304.

SaNG-Uk Ryu
DEPARTMENT OF MATHEMATICS, JEJU NATIONAL UNIVERSITY, JEJU 690-756, KOREA
E-mail address: ryusu81@jejunu.ac.kr



