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OPTIMAL CONTROL FOR SOME REACTION DIFFUSION

MODEL

Sang-Uk Ryu

Abstract. This paper is concerned with the optimal control problem for

some reaction diffusion model. That is, we show the existence of the global

weak solution for the Field-Noyes model. We also show the existence of
the optimal control.

1. Introduction

In this paper we are concerned with the following optimal control problem:

(P) minimize J(u)

with the cost functional J(u) of the form

J(u) =

∫ T

0

‖y(u)− yd‖2H1(I)dt+

∫ T

0

‖ρ(u)− ρd‖2H1(I)dt

+

∫ T

0

‖w(u)− wd‖2H1(I) + γ

∫ T

0

‖u‖2L2(I)dt, u ∈ L2(0, T ;L2(I)),
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where y = y(u), ρ = ρ(u) and w = w(u) are governed by the Field-Noyes model

∂y

∂t
= a

∂2y

∂x2
+

1

ε

(
qw − yw + y − y2

)
in I × (0, T ],

∂ρ

∂t
= b

∂2ρ

∂x2
+ y − ρ in I × (0, T ],

∂w

∂t
= d

∂2w

∂x2
+

1

δ

(
− qw − yw + cρ+ u

)
in I × (0, T ], (1.1)

∂y

∂x
(0, t) =

∂y

∂x
(l, t) = 0 on (0, T ],

∂ρ

∂x
(0, t) =

∂ρ

∂x
(l, t) = 0 on (0, T ],

∂w

∂x
(0, t) =

∂w

∂x
(l, t) = 0 on (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x), w(x, 0) = w0(x) in I.

Here, I = (0, l) is a bounded interval in R. y(x, t) denotes the concentrations
of HBrO2 , ρ(x, t) the concentrations of Ce4+, and w(x, t) the concentrations
of Br− at x ∈ I and a time t ∈ [0, T ], respectively. a > 0, b > 0, and d > 0
represent the diffusion rate of each species. Finally, δ, ε, q, c and γ are positive
constants. The term u(x, t) denotes the control fuction at x ∈ I and a time
t ∈ [0, T ] ([1], [9], [11]).

The model (1.1) was introduced by Field and Noyes is the simple mathe-
matical model for describing the complicated mechanism from a global point
of view([3], [9]). In [9] and [10], the authors studied for global dynamics of the
Field-Noyes model including the global attractor and exponential attractor.

Many authors have been studied the optimal control problem for the reac-
tion diffusion model([2], [4], [5]). In [6], the optimal control problem for the
chemotaxis model studied. Ryu([7], [8]) studied the optimal control problem
for B-Z reaction model of two variables. In this paper, we show the existence
of the global weak solution of (1.1). We also show the existence of the optimal
control.

The paper is organized as follows. Section 2 show the existence of the global
weak solutions. In Section 3 we show the existence of the optimal control.

Notations: For simplicity, we shall use a universal constant C to denote
various constants which are determined in each occurrence in a specific way by
a, b, c, d, ε, δ, γ, l. In a case when C depends also on some parameter, say θ, it
will be denoted by Cθ.
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2. Global weak solutions

Let us set three product Hilbert spaces V ⊂ H = H′ ⊂ V ′ as

V = H1(I)×H1(I)×H1(I),

H = L2(I)× L2(I)× L2(I),

V ′ = (H1(I))′ × (H1(I))′ × (H1(I))′.

Also we set a symmetric bilinear form on V × V × V:

a(Y, Ỹ ) =
(
A

1/2
1 y,A

1/2
1 ỹ

)
L2(I)

+
(
A

1/2
2 ρ,A

1/2
2 ρ̃

)
L2(I)

+
(
A

1/2
3 w,A

1/2
3 w̃

)
L2(I)

, Y =

yρ
w

 , Ỹ =

 ỹρ̃
w̃

 ∈ V,
where A1 = −a ∂2

∂x2 + ε−1, A2 = −b ∂
2

∂x2 + 1, and A3 = −d ∂2

∂x2 + δ−1q with the

same domain D(Ai) = H2
n(I) = {z ∈ H2(I); ∂z∂x (0) = ∂z

∂x (l) = 0} (i = 1, 2, 3).
Obviously, the form satisfies

|a(Y, Ỹ )| ≤M‖Y ‖V‖Ỹ ‖V , Y, Ỹ ∈ V, (a.i)

a(Y, Y ) ≥ m‖Y ‖2V , Y ∈ V (a.ii)

with some m and M > 0. This form then defines a linear isomorphism A =A1 0 0
0 A2 0
0 0 A3

 from V to V ′, and the part of A in H is a positive definite

self-adjoint operator in H. Let us set the space of initial values as

K =
{y0

ρ0

w0

 ∈ H; 0 ≤ y0 ∈ L2(I), 0 ≤ ρ0 ∈ L2(I), 0 ≤ w0 ∈ L2(I)
}
.

We also set the control space U = L2(0, T ;H) and

Uad =
{0

0
u

 ∈ U ;u ∈ L2(0, T ;L2(I)), u ≥ 0, ‖u‖L2(0,T ;L2(I)) ≤ C
}
.

Then (1.1) is formulated as the following problem

dY

dt
+AY = F (Y ) + U, 0 < t ≤ T, (2.1)

Y (0) = Y0

in the space V ′. Here, Y0 is defined by Y0 =

y0

ρ0

w0

 and U =

 0
0

δ−1u

.
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F (·) : V → V ′ is the mapping

F (Y ) =

ε−1
(
qw − yw + 2y − y2

)
y

δ−1
(
− yw + cρ

)
 (2.2)

and F (·) satisfies the following conditions:
(f.i) For each η > 0, there exists an increasing continuous function φη :

[0,∞)→ [0,∞) such that

‖F (Y )‖V′ ≤ η‖Y ‖V + φη(‖Y ‖H), Y ∈ V, a.e. (0, T );

(f.ii) For each η > 0, there exists an increasing continuous function ψη :
[0,∞)→ [0,∞) such that

‖F (Ỹ )− F (Y )‖V′ ≤ η‖Ỹ − Y ‖V
+ (‖Ỹ ‖V + ‖Y ‖V + 1)ψη(‖Ỹ ‖H + ‖Y ‖H)‖Ỹ − Y ‖H, Ỹ , Y ∈ V, a.e. (0, T ).

Indeed, it is seen as in [7] that

‖y2‖(H1(I))′ ≤ η‖y‖H1(I) + Cη‖y‖4L2(I), y ∈ H1(I)

and

‖yw‖(H1(I))′ ≤C‖yw‖L 3
2 (I)

≤C‖y‖L2(I)‖w‖
3
4

L2(I)‖w‖
1
4

H1(I)

≤η‖w‖H1(I) + Cη

(
‖y‖L2(I)‖w‖

3
4

L2(I)

) 4
3

≤η‖w‖H1(I) + Cη

(
‖y‖2L2(I) + ‖w‖3L2(I)

)
, y, w ∈ H1(I).

Hence, the condition (f.i) is fulfilled.
On the other hand, for ỹ, y, w̃, w ∈ H1(I),

‖ỹ2 − y2‖(H1(I))′ ≤ C‖ỹ2 − y2‖L2(I)

≤ C
(
‖ỹ‖L∞(I) + ‖y‖L∞(I)

)
‖ỹ − y‖L2(I)

≤ C
(
‖ỹ‖H1(I) + ‖y‖H1(I)

)
‖ỹ − y‖L2(I)

and

‖ỹw̃−yw‖(H1(I))′

≤C
(
‖(ỹ − y)w̃‖L2(I) + ‖y(w̃ − w)‖L2(I)

)
≤C
(
‖w̃‖L∞(I)‖ỹ − y‖L2(I) + ‖y‖L∞(I)‖w̃ − w‖L2(I)

)
≤C
(
‖w̃‖H1(I) + ‖y‖H1(I)

)(
‖ỹ − y‖L2(I) + ‖w̃ − w‖L2(I)

)
.

Hence, the condition (f.ii) is fulfilled.

We then obtain the local existence of the weak solution ([6]).



OPTIMAL CONTROL FOR SOME REACTION DIFFUSION MODEL 391

Theorem 2.1. Let (a.i), (a.ii), (f.i), and (f.ii) be satisfied. Then, for any
Y0 ∈ K and U ∈ Uad, (2.1) has a unique weak solution

Y ∈ H1(0, T (Y0, U);V ′) ∩ C([0, T (Y0, U)];H) ∩ L2(0, T (Y0, U);V).

Here, T (Y0, U) > 0 is determined by ‖Y0‖H and ‖U‖L2(0,T ;H).

Theorem 2.2. For any Y0 ∈ K and U ∈ Uad, the weak solution Y of (2.1) is
nonnegative. Therefore Y is a weak solution of (1.1).

Proof. We show nonnegativity of solutions, which is proved by the same method
in Yagi([9]). We consider an auxiliary problem

dY

dt
+AY = F (Y ) + U, 0 < t ≤ T, (2.3)

Y (0) = Y0.

Here, F (Y ) =

ε−1
(
qw − yw + 2y − y2

)
|y|

δ−1
(
− yw + cρ

)
 is modified nonlinear operator to

(2.2). Then, we also know that Y =

 ȳρ̄
w̄

 ∈ H1(0, T (Y0, U);V ′)∩L2(0, T (Y0, U);V).

Let us verify first that ρ̄ ≥ 0 by the truncation method. Consider H(ρ̄) is C1.1

cutoff function for −∞ < ρ̄ <∞ given by H(ρ̄) = ρ̄2

2 for −∞ ≤ ρ̄ < 0 and

H(ρ̄) = 0 for 0 ≤ ρ̄ <∞. Since ρ̄ ∈ L2(0, T (Y0, U);H1(I)), we see H ′(ρ̄) ∈
L2(0, T (Y0, U);H1(I)).

Therefore, if we take H ′(ρ̄) as the test function for the second equation in
(2.3), we obtain

〈ρ̄′(t), H ′(ρ̄(t))〉(H1(I))′,H1(I)

=
〈
b
∂2ρ̄

∂x2
+ |ȳ| − ρ̄, H ′(ρ̄(t))

〉
(H1(I))′,H1(I)

=b
〈∂2ρ̄

∂x2
, H ′(ρ̄(t))

〉
(H1(I))′,H1(I)

+
〈
|ȳ| − ρ̄, H ′(ρ̄(t))

〉
(H1(I))′,H1(I)

=I1 + I2.

Since I1 = −b
∫ l

0
|∂H

′(ρ̄(t))
∂x |2dx, we see that I1 ≤ 0. Since H ′(ρ̄) ≤ 0, H ′(ρ̄)ρ̄ ≥ 0

, it follows that I2 ≤ 0. Therefore, if we put

ψ(t) =

∫ l

0

H(ρ̄(t))dx, 0 ≤ t ≤ T (Y0, U),

then we see
d

dt
ψ(t) = 〈ρ̄′(t), H ′(ρ̄(t))〉(H1(I))′,H1(I) ≤ 0.

Therefore, ψ(t) ≤ ψ(0) for 0 ≤ t ≤ T (Y0, U, ). Thus, ψ(0) = 0 implies ψ(t) = 0,
that is, ρ̄(t) ≥ 0 for 0 ≤ t ≤ T (Y0, U).
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Let us verify that w̄ ≥ 0. Similarily, if we use H(w̄) and the third equation
in (2.3), then we obtain from u ≥ 0 that

〈w̄′(t), H ′(w̄(t))〉(H1(I))′,H1(I) ≤ 2‖ȳ‖L∞(I)

∫ l

0

H(w̄)dx ≤ C‖ȳ‖H1(I)

∫ l

0

H(w̄)dx.

If we put φ(t) =
∫ l

0
H(w̄(t))dx, 0 ≤ t ≤ T (Y0, U), then it is seen that

d

dt
φ(t) = 〈w̄′(t), H ′(w̄(t))〉(H1(I))′,H1(I) ≤ C‖ȳ‖H1(I)φ(t).

Thus we obtain that

φ(t) ≤ φ(0)exp
(
C

∫ t

0

‖ȳ(s)‖H1(I)ds
)

≤ φ(0)exp
(
CT (Y0, U)

∫ t

0

‖ȳ(s)‖2H1(I)ds
)
, 0 ≤ t ≤ T (Y0, U).

Since ȳ ∈ L2(0, T (Y0, U);H1(I)), we obtain φ(t) = 0, that is, w̄ ≥ 0 for 0 ≤ t ≤
T (Y0, U).

Finally, we show that ȳ ≥ 0. Similarily, we obtain

〈ȳ′(t), H ′(ȳ(t))〉(H1(I))′,H1(I) ≤ 2
(
‖ȳ‖L∞(I) + ‖w̄‖L∞(I)

) ∫ l

0

H(ȳ)dx

≤ C
(
‖ȳ‖H1(I) + ‖w̄‖H1(I)

) ∫ l

0

H(ȳ)dx.

If we put η(t) =
∫ l

0
H(ȳ(t))dx, 0 ≤ t ≤ T (Y0, U), then it is seen that

d

dt
η(t) = 〈ȳ′(t), H ′(ȳ(t))〉(H1(I))′,H1(I) ≤ C

(
‖ȳ‖H1(I) + ‖w̄‖H1(I)

)
η(t).

Thus we obtain that

η(t) ≤ η(0)exp
(
C

∫ t

0

(
‖ȳ(s)‖H1(I) + ‖w̄(s)‖H1(I)

)
ds
)

≤ η(0)exp
(
CT (Y0, U)

∫ t

0

(
‖ȳ(s)‖2H1(I) + ‖w̄(s)‖2H1(I)

)
ds
)
, 0 ≤ t ≤ T (Y0, U).

Since ȳ, w̄ ∈ L2(0, T (Y0, U);H1(I)), we obtain η(t) = 0, that is, ȳ ≥ 0 for
0 ≤ t ≤ T (Y0, U).

Therefore, we conclude that F (Y ) = F (Y ). Thus we see that Y is a local
solution of (2.1). By the uniqueness, we see that Y = Y for 0 ≤ t ≤ T (Y0, U).
Therefore, Y (t) ≥ 0 for 0 ≤ t ≤ T (Y0, U). Finally, we can show that T (Y0, U) =
T (Y0, U) by a contradiction as in [9]. �

Theorem 2.3. For any Y0 ∈ K and U ∈ Uad, (2.1) has a unique global weak
solution

0 ≤ Y ∈ H1(0, T ;V ′) ∩ C([0, T ];H) ∩ L2(0, T ;V).
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Proof. Let Y =

yρ
w

 be any local weak solution as in Theorem 2.1 on an

interval [0, S]. Then, if we use the method as in [9], we obtain the following
estimates

d

dt

∫ l

0

(y2 + ξρ2 + w2)dx+ µ

∫ l

0

(y2 + ξρ2 + w2)dx

+ ν

∫ l

0

(∣∣∣∂y
∂x

∣∣∣2 + ξ
∣∣∣∂ρ
∂x

∣∣∣2 +
∣∣∣∂w
∂x

∣∣∣2)dx ≤ C(1 +

∫ l

0

u2dx), (2.4)

where ξ = 4c2q−1δ−1, µ = min{2ε−1, 1, δ−1q} and ν = min{a, b, d}.
If we solve the following differential inequality

d

dt

∫ l

0

(y2 + ξρ2 + w2)dx+ µ

∫ l

0

(y2 + ξρ2 + w2)dx ≤ C(1 + ‖u‖2L2(I)),

we have

min{1, ξ}‖Y ‖2L∞(0,S;H) ≤ ‖y(t)‖2L2(I) + ξ‖ρ(t)‖2L2(I) + ‖w(t)‖2L2(I)

≤ e−µt
(
‖y0‖2L2(I) + ξ‖ρ0‖2L2(I) + ‖w0‖2L2(I)

)
+ C

(
1 + ‖u‖2L2(0,T ;L2(I))

)
. (2.5)

If we use (2.4), we obtain

k

∫ t

0

(‖y(s)‖2H1(I) + ξ‖ρ(s)‖2H1(I) + ‖w(s)‖2H1(I))ds

≤ (‖y0‖2L2(I) + ξ‖ρ0‖2L2(I) + ‖w0‖2L2(I)) +C

∫ T

0

(1 + ‖u‖2L2(I))ds, 0 ≤ t ≤ S,

(2.6)

where k = min{µ, ν}. Thus, we take t1 ∈ (0, S) so that y(t1), ρ(t1), w(t1) ∈
L2(I). By (2.5) and (2.6), we see ‖y‖L2(t1,S;H1(I))∩L∞(t1,S;L2(I)),
‖ρ‖L2(t1,S;H1(I))∩L∞(t1,S;L2(I)), and ‖w‖L2(t1,S;H1(I))∩L∞(t1,S;L2(I)) do not de-
pend on S. As a consequence, ‖y‖H1(t1,S;(H1(I))′), ‖ρ‖H1(t1,S;(H1(I))′),
‖w‖H1(t1,S;(H1(I))′), and ‖y‖C([t1,S];L2(I)), ‖ρ‖C([t1,S];L2(I)), ‖w‖C([t1,S];L2(I)) do
not depend on S. This shows that y, ρ, w can be extended as a weak solution
beyond the S. By the standard argument on the extension of the weak solutions,
we can then prove the desired result. �

Moreover, we also obtain the stability result with respect to the control.

Theorem 2.4. For any Y0 ∈ K, let Y1 =

y1

ρ1

w1

 and Y2 =

y2

ρ2

w2

 be the

solutions with respect to U1 =

 0
0

δ−1u1

 , U2 =

 0
0

δ−1u2

 ∈ Uad. Then, we
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have the following estimate

‖Y1(t)− Y2(t)‖2L∞(0,T ;H) ≤ C‖u1(t)− u2(t)‖2L2(0,T ;L2(I)) (2.7)

for all t ∈ [0, T ].

Proof. Let ũ = u1 − u2, ỹ = y1 − y2, ρ̃ = ρ1 − ρ2 and w̃ = w1 − w2. Then ỹ, ρ̃
and w̃ satisfy

∂ỹ

∂t
− a∂

2ỹ

∂x2
+

1

ε
ỹ =

1

ε

(
2ỹ + qw̃ − w1ỹ − y2w̃ − (y1 + y2)ỹ

)
in I × (0, T ],

∂ρ̃

∂t
− b ∂

2ρ̃

∂x2
+ ρ̃ = ỹ in I × (0, T ],

∂w̃

∂t
− d∂

2w̃

∂x2
+
q

δ
w̃ =

1

δ

(
− w1ỹ − y2w̃ + cρ̃+ ũ

)
in I × (0, T ],

∂ỹ

∂x
(0, t) =

∂ỹ

∂x
(l, t) = 0 on (0, T ], (2.8)

∂ρ̃

∂x
(0, t) =

∂ρ̃

∂x
(l, t) = 0 on (0, T ],

∂w̃

∂x
(0, t) =

∂w̃

∂x
(l, t) = 0 on (0, T ],

ỹ(x, 0) = 0, ρ̃(x, 0) = 0, w̃(x, 0) = 0 in I.

Taking the scalar product with ỹ to the first equation of (2.8), we have

1

2

d

dt
‖ỹ‖2L2(I)) +

m1

2
‖ỹ‖2H1(I) (2.9)

≤C
(
‖y1‖2H1(I) + ‖y2‖2H1(I) + ‖w1‖2H1(I) + 1

)
×
(
‖ỹ‖2L2(I)) + ‖w̃‖2L2(I)

)
,

where m1 = min{a, ε−1}. Taking the scalar product with ρ̃ to the second
equation of (2.8), we obtain

1

2

d

dt
‖ρ̃‖2L2(I)) +

m2

2
‖ρ̃‖2H1(I) ≤ ‖ỹ‖

2
L2(I), (2.10)

where m2 = min{b, 1}. Finally, we take the scalar product with w̃ to the third
equation of (2.8), we have

1

2

d

dt
‖w̃‖2L2(I)) +

m3

2
‖w̃‖2H1(I) (2.11)

≤C
(
‖w1‖2H1(I) + ‖y2‖2H1(I) + 1

)
×
(
‖ỹ‖2L2(I)) + ‖w̃‖2L2(I)) + ‖ρ̃‖2L2(I)

)
+ C‖ũ‖2L2(I),

where m3 = min{d, qδ−1}. From (2.9), (2.10) and (2.11), we have

d

dt
‖Ỹ ‖2H +m‖Ỹ ‖2V ≤ C

(
‖Y1‖2V + ‖Y2‖2V + 1

)
‖Ỹ ‖2H + C‖ũ‖2L2(I),
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where m = min{m1,m2,m3}. Using Gronwall’s inequality, we obtain that

‖Ỹ (t)‖2H +m

∫ t

0

‖Ỹ (t)‖2Vds

≤ C‖ũ‖2L2(0,T ;L2(I))e
∫ T
0
C(‖Y1(s)‖2V+‖Y2(s)‖2V+1)ds ≤ C‖u1 − u2‖2L2(0,T ;L2(I)

for all t ∈ [0, T ]. Hence, we otain (2.7). �

3. Existence of the optimal control

The problem (P) is obviously formulated as follows:

(P) minimize J(U),

where

J(U) =

∫ T

0

‖Y (U)− Yd‖2Vdt+ γ

∫ T

0

‖U‖2Hdt, U ∈ Uad.

Here, Yd =

ydρd
wd

 is a fixed element of L2(0, T ;V) with yd, ρd , wd ∈ L2(0, T ;H1(I)).

γ is a positive constant.

Theorem 3.1. There exists an optimal control U ∈ Uad for (P) such that
J(U) = min

U∈Uad

J(U).

Proof. Let {Un} ⊂ Uad be a minimizing sequence such that

lim
n→∞

J(Un) = min
U∈Uad

J(U).

Since {Un} is bounded in L2(0, T ;H), we can assume that Un → U weakly in
L2(0, T ;H). For simplicity, we will write Yn instead of the solution Y (Un) of
(2.1) corresponding to Un. Using the boundedness of Yn, we infer that Yn =ynρn
wn

→ Y =

 ȳρ̄
w̄

 weakly in L2(0, T ;V)∩H1(0, T ;V ′). Since V is compactly

embedded in H, we have

Yn → Y strongly in L2(0, T ;H). (3.1)

Now, we will show that Y is a solution to (2.1) with the control U . For any

Φ =

φ1

φ2

φ3

 ∈ L2(0, T ;V), we consider

∫ T

0

〈Y ′n(t),Φ(t)〉V′,Vdt+

∫ T

0

〈AYn(t),Φ(t)〉V′,Vdt

=

∫ T

0

〈F (Yn(t)),Φ(t)〉V′,Vdt+

∫ T

0

〈Un(t),Φ(t)〉V′,Vdt.
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We first observed that for any φ1 ∈ L2([0, T ];H1(I)),∫ T

0

〈y2
n − ȳ2, φ1〉(H1(I))′,H1(I)dt

≤ C
(
‖yn‖L∞(0,T ;L2(I)) + ‖y‖L∞(0,T ;L2(I))

)
‖yn − y‖L2(0,T ;L2(I))‖φ1‖L2(0,T ;H1(I)).

From (3.1), we have

y2
n → ȳ2 weakly in L2(0, T ; (H1(I))′).

Since

〈ynwn − ȳw̄, φ1〉(H1(I))′,H1(I)

≤
(∫ l

0

|ynwn − ȳw̄|dx
)
‖φ1‖L∞(I)

≤ C
(
‖wn‖L2(I) + ‖ȳ‖L2(I)

)(
‖yn − ȳ‖L2(I) + ‖wn − w̄‖L2(I)

)
‖φ1‖H1(I)

we obtain∫ T

0

〈ynwn − ȳw̄, φ1〉(H1(I))′,H1(I)dt

≤C
(
‖wn‖L∞(0,T ;L2(I)) + ‖ȳ‖L∞(0,T ;L2(I))

)
×
(
‖yn − ȳ‖L2(0,T ;L2(I)) + ‖wn − w̄‖L2(0,T ;L2(I))

)
‖φ1‖L2(0,T ;H1(I)).

From (3.1), we have

ynwn → ȳw̄ weakly in L2(0, T ; (H1(I))′).

For any Φ =

φ1

φ2

φ3

 ∈ L2(0, T ;V), we obtain

∫ T

0

〈Y ′(t),Φ(t)〉V′,Vdt+

∫ T

0

〈AY (t),Φ(t)〉V′,Vdt

=

∫ T

0

〈F (Y (t)),Φ(t)〉V′,Vdt+

∫ T

0

〈U(t),Φ(t)〉V′,Vdt.

This then shows that Y (t) satisfies the equation of (2.1) for almost all t ∈ (0, T ).
Therefore, by the uniqueness of the solution of (2.1), Y = Y (U).

Since Yn − Yd is weakly convergent to Y − Yd in L2(0, T ;V), we have:

min
U∈Uad

J(U) ≤ J(U) ≤ lim inf
n→∞

J(Un) = min
U∈Uad

J(U).

Hence, J(U) = min
U∈Uad

J(U). �
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