물 전기 분해로부터 수소 생산을 위한 망간 기반의 물 산화 촉매

  • 장우제 (서울대학교 재료공학부) ;
  • 서홍민 (서울대학교 재료공학부) ;
  • 하헌진 (서울대학교 재료공학부) ;
  • 조강희 (서울대학교 재료공학부) ;
  • 진경석 (서울대학교 재료공학부) ;
  • 남기태 (서울대학교 재료공학부)
  • 발행 : 2016.03.31

초록

키워드

참고문헌

  1. Y. Li, et al., "$MoS_2$ Nanoparticles Grown on Graphene: An Advanced Catalyst for the viation Hydrogen Evolution Reaction," J. Am. Chem. Soc., 133 [19] 7296-99 (2011). https://doi.org/10.1021/ja201269b
  2. Sim, U. et al., "Hydrogen Production by Electrolysis and Photoelectrochemi viation cal System," Wiley-Blackwell, 2014.
  3. J. Barber, "Photosynthetic Energy Conversion: Natural and Artificial," Chem. Soc. Rev., 38 [1] 185-96 (2009). https://doi.org/10.1039/B802262N
  4. J. Yano, et al., "Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster," Science, 314 [5800] 821-25 (2006). https://doi.org/10.1126/science.1128186
  5. J. S. Kanady, E. Y. Tsui, M. W. Day, and T. Agapie, "A Synthetic Model of the Mn3Ca Subsite of the Oxygen-Evolving Complex in Photosystem II," Science, 333 [6043] 733-36 (2011). https://doi.org/10.1126/science.1206036
  6. E. Y. Tsui, R. Tran, J. Yano, and T. Agapie, "Redox-Inactive Metals Modulate the Reduction Potential in Heterometallic Manganese-Oxido Clusters," Nat. Chem., 5 [4] 293-99 (2013). https://doi.org/10.1038/nchem.1578
  7. C. Zhang, et al., "A Synthetic Mn4Ca-Cluster Mimicking the Oxygen-Evolving Center of Photosynthesis," Science, 348 [6235] 690-93 (2015). https://doi.org/10.1126/science.aaa6550
  8. Y. Li, et al., "Dilated Cardiomyopathy and Neonatal Lethality in Mutant Mice Lacking Manganese Superoxide Dismutase," Nature genetics, 11 [4] 376-81 (1995). https://doi.org/10.1038/ng1295-376
  9. J. Emsley, "Nature's Building Blocks: an AZ Guide to the Elements," Oxford University Press, 2011.
  10. W. Zhang and C. Y. Cheng, "Manganese Metallurgy Review. Part I: Leaching of Ores/Secondary Materials and Recovery of Electrolytic/Chemical Manganese Dioxide," Hydrometallurgy, 89 [3] 137-59 (2007). https://doi.org/10.1016/j.hydromet.2007.08.010
  11. T. O. Bergman and J. G. Gahn, General properties Name, symbol, number.
  12. N. Cahoon, "An Electrochemical Evaluation of Manganese Dioxide for Dry Battery Use," J. Electrochem. Soc., 99 [9] 343-48 (1952). https://doi.org/10.1149/1.2779759
  13. S. Trasatti, "Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine," Electrochim. Acta, 29 [11] 1503-12 (1984). https://doi.org/10.1016/0013-4686(84)85004-5
  14. J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, and J. K. Norskov, "Electrolysis of Water on Oxide Surfaces," J. Electroanal. Chem., 607 [1] 83-9 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
  15. M. W. Kanan and D. G. Nocera, "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and $Co^{2+}$," Science, 321 [5892] 1072-75 (2008). https://doi.org/10.1126/science.1162018
  16. M. Dinca, Y. Surendranath, and D. G. Nocera, "Nickel-Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions," PNAS., 107 [23] 10337-41 (2010). https://doi.org/10.1073/pnas.1001859107
  17. R. D. L. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, and C. P. Berlinguette, "Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel," J. Am. Chem. Soc., 135 [31] 11580-86 (2013). https://doi.org/10.1021/ja403102j
  18. M. Gong, et al., "An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation," J. Am. Chem. Soc., 135 [23] 8452-55 (2013). https://doi.org/10.1021/ja4027715
  19. C. C. McCrory, et al., "Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices," J. Am. Chem. Soc., 137 [13] 4347-57 (2015). https://doi.org/10.1021/ja510442p
  20. J. Luo, et al., "Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-Abundant Catalysts," Science, 345 [6204] 1593-96 (2014). https://doi.org/10.1126/science.1258307
  21. S. A. Bonke, M. Wiechen, D. R. MacFarlane, and L. Spiccia, "Renewable Fuels from Concentrated Solar Power: towards Practical Artificial Photosynthesis," Energy Environ. Sci., 8 [9] 2791-96 (2015). https://doi.org/10.1039/C5EE02214B
  22. Z. Chen and T. J. Meyer, "Copper(II) Catalysis of Water Oxidation," Angew. Chem. Int. Ed., 52 [2] 700-3 (2013). https://doi.org/10.1002/anie.201207215
  23. M.-T. Zhang, Z. Chen, P. Kang, and T. J. Meyer, "Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex," J. Am. Chem. Soc., 135 [6] 2048-51 (2013). https://doi.org/10.1021/ja3097515
  24. K. I. Chahara, T. Ohno, M. Kasai, and Y. Kozono, "Magnetoresistance in Magnetic Manganese Oxide with Intrinsic Antiferromagnetic Spin Structure," Appl. Phys. Lett., 63 [14] 1990-92 (1993). https://doi.org/10.1063/1.110624
  25. A. Indra, et al., "Active Mixed-Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles," Angewandte. Chem. Int. Ed., 52 [50] 13206-10 (2013). https://doi.org/10.1002/anie.201307543
  26. C.-H. Kuo, et al., "Robust Mesoporous Manganese Oxide Catalysts for Water Oxidation," ACS Catal., 5 [3] 1693-99 (2015). https://doi.org/10.1021/cs501739e
  27. D. M. Robinson, Y. B. Go, M. Greenblatt, and G. C. Dismukes, "Water Oxidation by ${\lambda}-MnO_2$: Catalysis by the Cubical $Mn_4O_4$ Subcluster Obtained by Delithiation of Spinel $LiMn_2O_4$," J. Am. Chem. Soc., 132 [33] 11467-69 (2010). https://doi.org/10.1021/ja1055615
  28. M. M. Najafpour, T. Ehrenberg, M. Wiechen, and P. Kurz, "Calcium Manganese(III) Oxides ($CaMn_2O_4{\cdot}x H_2O)$) as Biomimetic Oxygen-Evolving Catalysts," Angew. Chem. Int. Ed., 49 [12] 2233-37 (2010). https://doi.org/10.1002/anie.200906745
  29. K. Jin, et al., "Hydrated Manganese(II) Phosphate ($Mn_3(PO_4)2{\cdot}_3H_2O$) as a Water Oxidation Catalyst," J. Am. Chem. Soc., 136 7435-43 (2014). https://doi.org/10.1021/ja5026529
  30. J. Park, et al., "A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency," J. Am. Chem. Soc., 136 [11] 4201-11 (2014). https://doi.org/10.1021/ja410223j
  31. K. Jin, et al., "Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis," Scientific reports, 5 (2015).
  32. D. Jeong, et al. "$Mn_5O_8$ Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH," ACS Catal., 5 [8] 4624-28 (2015). https://doi.org/10.1021/acscatal.5b01269