Browse > Article

물 전기 분해로부터 수소 생산을 위한 망간 기반의 물 산화 촉매  

Jang, U-Je (서울대학교 재료공학부)
Seo, Hong-Min (서울대학교 재료공학부)
Ha, Heon-Jin (서울대학교 재료공학부)
Jo, Gang-Hui (서울대학교 재료공학부)
Jin, Gyeong-Seok (서울대학교 재료공학부)
Nam, Gi-Tae (서울대학교 재료공학부)
Publication Information
Ceramist / v.19, no.1, 2016 , pp. 75-85 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Barber, "Photosynthetic Energy Conversion: Natural and Artificial," Chem. Soc. Rev., 38 [1] 185-96 (2009).   DOI
2 Y. Li, et al., "$MoS_2$ Nanoparticles Grown on Graphene: An Advanced Catalyst for the viation Hydrogen Evolution Reaction," J. Am. Chem. Soc., 133 [19] 7296-99 (2011).   DOI
3 Sim, U. et al., "Hydrogen Production by Electrolysis and Photoelectrochemi viation cal System," Wiley-Blackwell, 2014.
4 J. Yano, et al., "Where Water is Oxidized to Dioxygen: Structure of the Photosynthetic Mn4Ca Cluster," Science, 314 [5800] 821-25 (2006).   DOI
5 J. S. Kanady, E. Y. Tsui, M. W. Day, and T. Agapie, "A Synthetic Model of the Mn3Ca Subsite of the Oxygen-Evolving Complex in Photosystem II," Science, 333 [6043] 733-36 (2011).   DOI
6 E. Y. Tsui, R. Tran, J. Yano, and T. Agapie, "Redox-Inactive Metals Modulate the Reduction Potential in Heterometallic Manganese-Oxido Clusters," Nat. Chem., 5 [4] 293-99 (2013).   DOI
7 C. Zhang, et al., "A Synthetic Mn4Ca-Cluster Mimicking the Oxygen-Evolving Center of Photosynthesis," Science, 348 [6235] 690-93 (2015).   DOI
8 Y. Li, et al., "Dilated Cardiomyopathy and Neonatal Lethality in Mutant Mice Lacking Manganese Superoxide Dismutase," Nature genetics, 11 [4] 376-81 (1995).   DOI
9 J. Emsley, "Nature's Building Blocks: an AZ Guide to the Elements," Oxford University Press, 2011.
10 W. Zhang and C. Y. Cheng, "Manganese Metallurgy Review. Part I: Leaching of Ores/Secondary Materials and Recovery of Electrolytic/Chemical Manganese Dioxide," Hydrometallurgy, 89 [3] 137-59 (2007).   DOI
11 T. O. Bergman and J. G. Gahn, General properties Name, symbol, number.
12 N. Cahoon, "An Electrochemical Evaluation of Manganese Dioxide for Dry Battery Use," J. Electrochem. Soc., 99 [9] 343-48 (1952).   DOI
13 S. Trasatti, "Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine," Electrochim. Acta, 29 [11] 1503-12 (1984).   DOI
14 J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, and J. K. Norskov, "Electrolysis of Water on Oxide Surfaces," J. Electroanal. Chem., 607 [1] 83-9 (2007).   DOI
15 M. W. Kanan and D. G. Nocera, "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and $Co^{2+}$," Science, 321 [5892] 1072-75 (2008).   DOI
16 M. Dinca, Y. Surendranath, and D. G. Nocera, "Nickel-Borate Oxygen-Evolving Catalyst that Functions under Benign Conditions," PNAS., 107 [23] 10337-41 (2010).   DOI
17 M. Gong, et al., "An Advanced Ni-Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation," J. Am. Chem. Soc., 135 [23] 8452-55 (2013).   DOI
18 C. C. McCrory, et al., "Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices," J. Am. Chem. Soc., 137 [13] 4347-57 (2015).   DOI
19 J. Luo, et al., "Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-Abundant Catalysts," Science, 345 [6204] 1593-96 (2014).   DOI
20 S. A. Bonke, M. Wiechen, D. R. MacFarlane, and L. Spiccia, "Renewable Fuels from Concentrated Solar Power: towards Practical Artificial Photosynthesis," Energy Environ. Sci., 8 [9] 2791-96 (2015).   DOI
21 Z. Chen and T. J. Meyer, "Copper(II) Catalysis of Water Oxidation," Angew. Chem. Int. Ed., 52 [2] 700-3 (2013).   DOI
22 M.-T. Zhang, Z. Chen, P. Kang, and T. J. Meyer, "Electrocatalytic Water Oxidation with a Copper(II) Polypeptide Complex," J. Am. Chem. Soc., 135 [6] 2048-51 (2013).   DOI
23 R. D. L. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, and C. P. Berlinguette, "Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel," J. Am. Chem. Soc., 135 [31] 11580-86 (2013).   DOI
24 K. I. Chahara, T. Ohno, M. Kasai, and Y. Kozono, "Magnetoresistance in Magnetic Manganese Oxide with Intrinsic Antiferromagnetic Spin Structure," Appl. Phys. Lett., 63 [14] 1990-92 (1993).   DOI
25 A. Indra, et al., "Active Mixed-Valent MnOx Water Oxidation Catalysts through Partial Oxidation (Corrosion) of Nanostructured MnO Particles," Angewandte. Chem. Int. Ed., 52 [50] 13206-10 (2013).   DOI
26 C.-H. Kuo, et al., "Robust Mesoporous Manganese Oxide Catalysts for Water Oxidation," ACS Catal., 5 [3] 1693-99 (2015).   DOI
27 D. M. Robinson, Y. B. Go, M. Greenblatt, and G. C. Dismukes, "Water Oxidation by ${\lambda}-MnO_2$: Catalysis by the Cubical $Mn_4O_4$ Subcluster Obtained by Delithiation of Spinel $LiMn_2O_4$," J. Am. Chem. Soc., 132 [33] 11467-69 (2010).   DOI
28 M. M. Najafpour, T. Ehrenberg, M. Wiechen, and P. Kurz, "Calcium Manganese(III) Oxides ($CaMn_2O_4{\cdot}x H_2O)$) as Biomimetic Oxygen-Evolving Catalysts," Angew. Chem. Int. Ed., 49 [12] 2233-37 (2010).   DOI
29 K. Jin, et al., "Hydrated Manganese(II) Phosphate ($Mn_3(PO_4)2{\cdot}_3H_2O$) as a Water Oxidation Catalyst," J. Am. Chem. Soc., 136 7435-43 (2014).   DOI
30 J. Park, et al., "A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency," J. Am. Chem. Soc., 136 [11] 4201-11 (2014).   DOI
31 K. Jin, et al., "Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis," Scientific reports, 5 (2015).
32 D. Jeong, et al. "$Mn_5O_8$ Nanoparticles as Efficient Water Oxidation Catalysts at Neutral pH," ACS Catal., 5 [8] 4624-28 (2015).   DOI