그래핀-세라믹 구조세라믹스 동향

  • Published : 2016.03.31

Abstract

Keywords

References

  1. A. R. Bunsell, Fundamentals of Fibre Reinforced Composite Materials; pp. 398, CRC Press, London, 2005.
  2. J. Cho, A. R. Boccaccini, and M. S. P. Shaffer, "Ceramic Matrix Composites Containing Carbon Nanotubes," J. Mater. Sci., 44 [8] 1934-51 (2009). https://doi.org/10.1007/s10853-009-3262-9
  3. G. L. Hwang and K. C. Hwang, "Carbon Nanotube Reinforced Ceramics," J. Mater. Chem., 11 [6] 1722-25 (2001). https://doi.org/10.1039/b101294k
  4. G. D. Zhan and A. K. Mukherjee, "Carbon Nanotube Reinforced Alumina-Based Ceramics with Novel Mechanical, Electrical, and Thermal Properties," Int. J. Appl. Ceram. Techol., 1 [2] 161-71 (2004).
  5. J. Cho, F. Inam, M. J. Reece, Z. Chlup, I. Dlouhy, M. S. P. Shaffer, and A. R. Boccaccini, "Carbon Nanotubes: Do They Toughen Brittle Matrices?," J. Mater. Sci., 46 [14] 4770-79 (2011). https://doi.org/10.1007/s10853-011-5387-x
  6. J. W. Ning, J. J. Zhang, Y. B. Pan, and J. K. Guo, "Fabrication and Mechanical Properties of $SiO_2$ Matrix Composites Reinforced by Carbon Nanotube," Mater. Sci. Eng. A: Struct., 357 [1-2] 392-96 (2003). https://doi.org/10.1016/S0921-5093(03)00256-9
  7. R. Sivakumar, S. Q. Guo, T. Nishimura, and Y. Kagawa, "Thermal Conductivity in Multi-Wall Carbon Nanotube/Silica-Based Nanocomposites," Scr. Mater., 56 [4] 265-68 (2007). https://doi.org/10.1016/j.scriptamat.2006.10.025
  8. S. Q. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, "Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes," J. Am. Ceram. Soc., 90 [5] 1667-70 (2007). https://doi.org/10.1111/j.1551-2916.2007.01636.x
  9. F. Inam, H. X. Yan, D. D. Jayaseelan, T. Peijs, and M. J. Reece, "Electrically Conductive Alumina-Carbon Nanocomposites Prepared by Spark Plasma Sintering," J. Eur. Ceram. Soc., 30 [2] 153-57 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.05.045
  10. J. P. Fan, D. M. Zhuang, D. Q. Zhao, G. Zhang, M. S. Wu, F. Wei, and Z. J. Fan, "Toughening and Reinforcing Alumina Matrix Composite with Single-Wall Carbon Nanotubes," Appl. Phys. Lett., 89 [12] 121910 (2006). https://doi.org/10.1063/1.2336623
  11. G. D. Zhan, J. D. Kuntz, J. E. Garay, and A. K. Mukherjee, "Electrical Properties of Nanoceramics Reinforced with Ropes of Single-Walled Carbon Nanotubes," Appl. Phys. Lett., 83 [6] 1228-30 (2003). https://doi.org/10.1063/1.1600511
  12. A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., 6 [3] 183-91 (2007). https://doi.org/10.1038/nmat1849
  13. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321 [5887] 385-88 (2008). https://doi.org/10.1126/science.1157996
  14. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett., 8 [3] 902-7 (2008). https://doi.org/10.1021/nl0731872
  15. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-Based Composite Materials," Nature, 442 [7100] 282-86 (2006). https://doi.org/10.1038/nature04969
  16. J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, F. M. Cai, C. D. Zhang, H. J. Gao, and Y. S. Chen, "Electromagnetic Interference Shielding of Graphene/Epoxy Composites," Carbon, 47 [3] 922-25 (2009). https://doi.org/10.1016/j.carbon.2008.12.038
  17. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, "A New Compounding Method for Exfoliated Graphite-Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold," Compos. A: Appl. S, 38 [7] 1675-82 (2007). https://doi.org/10.1016/j.compositesa.2007.02.003
  18. A. Yasmin, J. J. Luo, and I. M. Daniel, "Processing of Expanded Graphite Reinforced Polymer Nanocomposites," Compos. Sci. Technol., 66 [9] 1182-89 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014
  19. L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011). https://doi.org/10.1021/nn200319d
  20. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff," Graphene-Silica Composite Thin Films as Transparent Conductors," Nano Lett., 7 [7] 1888-92 (2007). https://doi.org/10.1021/nl070477+
  21. L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen, and W. Jiang," Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010). https://doi.org/10.1016/j.carbon.2010.01.017
  22. C. W. Lam, J. T. James, R. McCluskey, S. Arepalli, and R. L. Hunter, "A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks," Crit. Rev. Toxicol., 36 [3] 189-217 (2006). https://doi.org/10.1080/10408440600570233
  23. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 306 666-69 (2004). https://doi.org/10.1126/science.1102896
  24. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-Dimensional Atomic Crystals," Proc. Natl. Acad. Sci. U.S.A., 102 10451-53 (2005). https://doi.org/10.1073/pnas.0502848102
  25. B. Jayasena and S. Subbiah, "A Novel Mechanical Cleavage Method for Synthesizing Few-Layer Graphenes," Nanoscale Res. Lett., 6 [95] 48 (2011).
  26. J. Chen, M. Duan, and G. Chen, "Continuous Mechanical Exfoliation of Graphene Sheets via Three-Roll Mill," J. Mater. Chem., 22 19625 (2012). https://doi.org/10.1039/c2jm33740a
  27. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite," Nat. Nanotechnol., 3 563-68 (2008). https://doi.org/10.1038/nnano.2008.215
  28. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, "Liquid Phase Production of Graphene by Exfoliation of Graphite," J. Am. Chem. Soc., 131 3611-20 (2009). https://doi.org/10.1021/ja807449u
  29. U. Khan, A. O'Neill, M. Lotya, S. De, and J. N. Coleman, "High-Concentration Solvent Exfoliation of Graphene," Small, 6 864-71 (2010). https://doi.org/10.1002/smll.200902066
  30. L. Lin, X. Zheng, S. Zhang, and D. A. Allwood, "Surface Energy Engineering in the Solvothermal Deoxidation of Graphene Oxide," Adv. Mater.Interfaces, 1 1300078 (2014). https://doi.org/10.1002/admi.201300078
  31. A. Ciesielski and P. Samori, "Graphene via Sonication Assisted Liquid-Phase Exfoliation," Chem. Soc. Rev., 43 381-98 (2014). https://doi.org/10.1039/C3CS60217F
  32. G. Cravotto and P. Cintas, "Sonication-Assisted Fabrication and Post-Synthetic Modifications of Graphene-Like Materials," Chem. Eur. J., 16 5246-59 (2010). https://doi.org/10.1002/chem.200903259
  33. C. Knieke, A. Berger, M. Voigt, R. N. K. Taylor, J. R ohrl, and W. Peukert, "Scalable Production of Graphene Sheets by Mechanical Delamination," Carbon, 48 3196-204 (2010). https://doi.org/10.1016/j.carbon.2010.05.003
  34. W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, "Preparation of Graphene by Exfoliation of Graphite Using Wet Ball Milling," J. Mater. Chem., 20 5817 (2010). https://doi.org/10.1039/c0jm01354d
  35. I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. W. Chang, L. Dai, and J. B. Baek, "Edge-Carboxylated Graphene Nanosheets via Ball Milling," Proc. Natl. Acad. Sci. U. S. A, 109 5588-93 (2012). https://doi.org/10.1073/pnas.1116897109
  36. C. Damm, T. J. Nacken, and W. Peukert, "Quantitative Evaluation of Delamination of Graphite by Wet Media Milling," Carbon, 81 284-94 (2015). https://doi.org/10.1016/j.carbon.2014.09.059
  37. R. Aparna, N. Sivakumar, A. Balakrishnan, A. Sreekumar Nair, S. V. Nair, and K. R. V. Subramanian, "An Effective Route to Produce Few-Layer Graphene Using Combinatorial Ball Milling and Strong Aqueous Exfoliants," J. Renewable Sustainable Energy, 5 033123 (2013). https://doi.org/10.1063/1.4809794
  38. A. E. Del Rio-Castillo, C. Merino, E. Diez-Barra, and E. V'azquez, "Selective Suspension of Single Layer Graphene Mechanochemically Exfoliated from Carbon Nanofibres," Nano Res., 7 963-72 (2014). https://doi.org/10.1007/s12274-014-0457-4
  39. Z. Shen, J. Li, M. Yi, X. Zhang, and S. Ma, "Preparation of Graphene by Jet Cavitation," Nanotechnology, 22 365306 (2011). https://doi.org/10.1088/0957-4484/22/36/365306
  40. M. Yi, Z. Shen, W. Zhang, J. Zhu, L. Liu, S. Liang, X. Zhang, and S. Ma, "Hydrodynamics-Assisted Scalable Production of Boron Nitride Nanosheets and their Application in Improving Oxygen-Atom Erosion Resistance of Polymeric Composites," Nanoscale, 5 10660-67(2013). https://doi.org/10.1039/c3nr03714b
  41. K. R. Paton, E. Varrla, C. Backes, R. J. Smith, U. Khan, A. O'Neill, C. Boland, M. Lotya, O. M. Istrate, P. King, T. Higgins, S. Barwich, P. May, P. Puczkarski, I. Ahmed, M. Moebius, H. Pettersson, E. Long, J. Coelho, S. E. O'Brien, E. K. McGuire, B. M. Sanchez, G. S. Duesberg, N. McEvoy, T. J. Pennycook, C. Downing, A. Crossley, V. Nicolosi, and J. N. Coleman, "Scalable Production of Large Quantities of Defect-Free Few-Layer Graphene by Shear Exfoliation in Liquids," Nat. Mater., 13 624-30 (2014). https://doi.org/10.1038/nmat3944
  42. L. Liu, Z. Shen, M. Yi, X. Zhang, and S. Ma, "A Green, Rapid and Size-Controlled Production of High-Quality Graphene Sheets by Hydrodynamic Forces," RSC Adv., 4 36464 (2014). https://doi.org/10.1039/C4RA05635C
  43. M. Yi and Z. Shen, "Kitchen Blender for Producing High-Quality Few-Layer Graphene," Carbon, 78 622-26 (2014). https://doi.org/10.1016/j.carbon.2014.07.035
  44. E. Varrla, K. R. Paton, C. Backes, A. Harvey, R. J. Smith, J. McCauley, and J. N. Coleman, "Turbulence-Assisted Shear Exfoliation of Graphene Using Household Detergent and a Kitchen Blender," Nanoscale, 6 11810-19 (2014). https://doi.org/10.1039/C4NR03560G
  45. Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Adv. Mater., 22 [35] 3906-24 (2010). https://doi.org/10.1002/adma.201001068
  46. S. Park and R. S. Ruoff, "Chemical Methods for the Production of Graphenes," Nat. Nanotechnol., 4 [4] 217-24 (2009). https://doi.org/10.1038/nnano.2009.58
  47. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, "Graphene Based Materials: Past, Present and Future," Prog. Mater. Sci., 56 [8] 1178-271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
  48. K. Wang, Y. F. Wang, Z. J. Fan, J. Yan, and T. Wei, "Preparation of Graphene Nanosheet/ Alumina Composites by Spark Plasma Sintering," Mater. Res. Bull., 46 [2] 315-18 (2011). https://doi.org/10.1016/j.materresbull.2010.11.005
  49. L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, "Toughening in Graphene Ceramic Composites," ACS Nano, 5 [4] 3182-90 (2011). https://doi.org/10.1021/nn200319d
  50. Y. C. Fan,L. J. Wang, J. L. Li, J. Q. Li, S. K. Sun, F. Chen, L. D. Chen, and W. Jiang, "Preparation and Electrical Properties of Graphene Nanosheet/$Al_2O_3$ Composites," Carbon, 48 [6] 1743-49 (2010). https://doi.org/10.1016/j.carbon.2010.01.017
  51. O. Tapaszto, L. Tapaszto, M. Marko, F. Kern, R. Gadow, and C. Balazsi, "Dispersion Patterns of Graphene and Carbon Nanotubes in Ceramic Matrix Composites," Chem. Phys. Lett., 511 [4-6] 340-43 (2011). https://doi.org/10.1016/j.cplett.2011.06.047
  52. P. Kun, O. Tapaszto, F. Weber, and C. Balazsi, "Determination of Structural and Mechanical Properties of Multilayer Graphene Added Silicon Nitride-Based Composites," Ceram. Int., 38 [1] 211-16 (2012). https://doi.org/10.1016/j.ceramint.2011.06.051
  53. T. He, J. L. Li, L. J. Wang, J. J. Zhu, and W. Jiang, "Preparation and Consolidation of Alumina/Graphene Composite Powders," Mater. Trans., 50 [4] 749-51 (2009). https://doi.org/10.2320/matertrans.MRA2008458
  54. J. Echeberria, N. Rodriguez, J. Vleugels, K. Vanmeensel, A. Reyes- Rojas, A. Garcia-Reyes, C. Dominguez-Rios, A. Aguilar-Elguezabal and M. H. Bocanegra-Bernal, "Hard and Tough Carbon Nanotube-Reinforced Zirconia-Toughened Alumina Composites Prepared by Spark Plasma Sintering," Carbon, 50 [2] 706-17 (2012). https://doi.org/10.1016/j.carbon.2011.09.031
  55. M. Estili, and A. Kawasaki, "Engineering Strong Intergraphene Shear Resistance in Multi-walled Carbon Nanotubes and Dramatic Tensile Improvements," Adv. Mater., 22 [5] 607 (2010). https://doi.org/10.1002/adma.200902140
  56. Y. Yang, Y. Wang, W. Tian, Z. Q. Wang, Y. Zhao, L. Wang, and H. M. Bian, "Reinforcing and Toughening Alumina/Titania Ceramic Composites with Nano-Dopants from Nanostructured Composite Powders," Mat. Sci. Eng. A: Struct, 508 [1-2] 161-66 (2009). https://doi.org/10.1016/j.msea.2008.12.040
  57. J. Dusza, G. Blugan, J. Morgiel, J. Kuebler, F. Inam, T. Peijs, M. J. Reece, and V. Puchy, "Hot Pressed and Spark Plasma Sintered Zirconia/Carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 [15] 3177-84 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.05.030
  58. C. Balazsi, Z. Shen, Z. Konya, Z. Kasztovszky, F. Weber, Z. Vertesy, L. P. Biro, I. Kiricsi, and P. Arato, "Processing of Carbon Nanotube Reinforced Silicon Nitride Composites by Spark Plasma Sintering," Compos. Sci. Technol., 65 [5] 727-33 (2005).
  59. S. Q. Guo, R. Sivakumar, H. Kitazawa, and Y. Kagawa, "Electrical Properties of Silica-Based Nanocomposites with Multiwall Carbon Nanotubes," J. Am. Ceram. Soc., 90 [5] 1667-70 (2007). https://doi.org/10.1111/j.1551-2916.2007.01636.x
  60. A. R. Boccaccini, B. J. C. Thomas, G. Brusatin and P. Colombo, "Mechanical and Electrical Properties of Hot-Pressed Borosilicate Glass Matrix Composites Containing Multi-Wall Carbon Nanotubes," J. Mater. Sci., 42 [6] 2030-36 (2007). https://doi.org/10.1007/s10853-006-0540-7
  61. J. A. Lewis, "Colloidal Processing of Ceramics," J. Am. Ceram. Soc., 83 [10] 2341-59 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
  62. C. Zheng, M. Feng, X. Zhen, J. Huang, and H. B. Zhan, "Materials Investigation of Multi-Walled Carbon Nanotubes Doped Silica Gel Glass Composites," J. Non- Cryst. Solids, 354 [12-13] 1327-30 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.02.089
  63. H. B. Zhan, W. Z. Chen, M. Q. Wang, Zhengchan, and C. L. Zou, "Optical Limiting Effects of Multi-Walled Carbon Nanotubes Suspension and Silica Xerogel Composite," Chem. Phys. Lett., 382 [3-4] 313-17 (2003). https://doi.org/10.1016/j.cplett.2003.10.066
  64. Y. Zeng, Y. Zhou, L. Kong, T. Zhou, and G. Shi, "A Novel Composite of $SiO_2$-Coated Graphene Oxide and Molecularly Imprinted Polymers for Electrochemical Sensing Dopamine," Biosens. Bioelectr., 45 25-33 (2013). https://doi.org/10.1016/j.bios.2013.01.036
  65. W. Y. Cheng, C. C. Wang, and S. Y. Lu, "Graphene Aerogels as a Highly Efficient Counter Electrode Material for Dye-Sensitized Solar Cells," Carbon, 54 291-99 (2013). https://doi.org/10.1016/j.carbon.2012.11.041
  66. J. L. Yang, J. J. Wang, D. N. Wang, X. F. Li, D. S. Geng, G. X. Liang, M. Gauthier, R. Y. Li, and X. L. Sun, "3D Porous $LiFePO_4$/Graphene Hybrid Cathodes with Enhanced Performance for Li-Ion Batteries," J. Power Sour., 208 340-44 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.032
  67. R. G. Duan and A. K. Mukherjee, "Synthesis of SiCNO Nanowires through Heat-Treatment of Polymer-Functionalized Single-Walled Carbon Nanotubes," Adv. Mater., 16 [13] 1106 (2004). https://doi.org/10.1002/adma.200306564
  68. L. N. An, W. X. Xu, S. Rajagopalan, C. M. Wang, H. Wang, Y. Fan, L. G. Zhang, D. P. Jiang, J. Kapat, L. Chow, B. H. Guo, J. Liang, and R. Vaidyanathan, "Carbon-Nanotube-Reinforced Polymer-Derived Ceramic Composites," Adv. Mater., 16 [22] 2036 (2004). https://doi.org/10.1002/adma.200306241
  69. J. H. Lehman, K. E. Hurst, G. Singh, E. Mansfield, J. D. Perkins, and C. L. Cromer, "Core-Shell Composite of SiCN and Multiwalled Carbon Nanotubes from Toluene Dispersion," J. Mater. Sci., 45 [15] 4251-54 (2010). https://doi.org/10.1007/s10853-010-4611-4
  70. F. Ji, Y. L. Li, J. M. Feng, D. Su, Y. Y. Wen, Y. Feng, and F. Hou, "Electrochemical Performance of Graphene Nanosheets and Ceramic Composites as Anodes for Lithium Batteries," J. Mater. Chem., 19 [47] 9063-67 (2009). https://doi.org/10.1039/b915838c
  71. J. Sun and L. Gao, "Development of a Dispersion Process for Carbon Nanotubes in Ceramic Matrix by Heterocoagulation," Carbon, 41 [5] 1063-68 (2003). https://doi.org/10.1016/S0008-6223(02)00441-4
  72. B. Milsom, G. Viola, Z. P. Gao, F. Inam, T. Peijs, and M. J. Reece, "The Effect of Carbon Nanotubes on the Sintering Behaviour of Zirconia," J. Eur. Ceram. Soc., 32 [16] 4149-56 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.028
  73. B. Lawn, "Indentation Fracture", in 'Fracture of brittile solids-second edition', Press Syndicate of the University of Cambridge, Cambridge, 1993.
  74. X. T. Wang, N. P. Padture, and H. Tanaka, "Contact-Damage-Resistant Ceramic/Single-Wall Carbon Nanotubes and Ceramic/Graphite Composites," Nat. Mater., 3 [8] 539-44 (2004). https://doi.org/10.1038/nmat1161
  75. G. D. Quinn and R. C. Bradt, "On the Vickers Indentation Fracture Toughness Test," J. Am. Ceram. Soc., 90 [3] 673-80 (2007). https://doi.org/10.1111/j.1551-2916.2006.01482.x
  76. B. W. Sheldon and W. A. Curtin, "Nanoceramic Composites: Tough to Test," Nat. Mater., 3 [8] 505-6 (2004). https://doi.org/10.1038/nmat1174
  77. L. Kvetkova, A. Duszova, P. Hvizdos, J. Dusza, P. Kun, and C. Balazsi, "Fracture Toughness and Toughening Mechanisms in Graphene Platelet Reinforced $Si_3N_4$ Composites," Scr. Mater., 66 [10] 793-96 (2012). https://doi.org/10.1016/j.scriptamat.2012.02.009
  78. J. Liu, H. X. Yan, M. J. Reece, and K. Jiang, "Toughening of Zirconia/Alumina Composites by the Addition of Graphene Platelets," J. Eur. Ceram Soc., 32 [16] 4185-93 (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.07.007
  79. Y. C. Fan, W. Jiang, and A. Kawasaki, "Highly Conductive Few-Layer Graphene/$Al_2O_3$ Nanocomposites with Tunable Charge Carrier Type," Adv. Funct. Mater., 22 [18] 3882-89 (2012). https://doi.org/10.1002/adfm.201200632
  80. S. Rul, F. Lefevre-schlick, E. Capria, C. Laurent, and A. Peigney, "Percolation of Single-Walled Carbon Nanotubes in Ceramic Matrix Nanocomposites," Acta Mater., 52 [4] 1061-67 (2004). https://doi.org/10.1016/j.actamat.2003.10.038
  81. C. Ramirez, L. Garzon, P. Miranzo, M. I. Osendi, and C. Ocal, "Electrical Conductivity Maps in Graphene Nanoplatelet/Silicon Nitride Composites Using Conducting Scanning Force Microscopy," Carbon, 49 [12] 3873-80 (2011). https://doi.org/10.1016/j.carbon.2011.05.025