DOI QR코드

DOI QR Code

Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

  • Ostheimer, Christian (Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg) ;
  • Hubsch, Patrick (Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg) ;
  • Janich, Martin (Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg) ;
  • Gerlach, Reinhard (Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg) ;
  • Vordermark, Dirk (Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg)
  • Received : 2016.08.31
  • Accepted : 2016.10.14
  • Published : 2016.12.31

Abstract

Purpose: Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). Materials and Methods: A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. Results: VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8%-88.4% in coplanar, 77.5%-88.2% in non-coplanar IMRT and 82.8%-90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Conclusion: Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

Keywords

References

  1. Mendenhall WM, Mendenhall CM, Werning JW, Reith JD, Mendenhall NP. Cutaneous angiosarcoma. Am J Clin Oncol 2006;29:524-8. https://doi.org/10.1097/01.coc.0000227544.01779.52
  2. Samant RS, Fox GW, Gerig LH, Montgomery LA, Allan DS. Total scalp radiation using image-guided IMRT for progressive cutaneous T cell lymphoma. Br J Radiol 2009;82:e122-5. https://doi.org/10.1259/bjr/61338036
  3. Wojcicka JB, Lasher DE, McAfee SS, Fortier GA. Dosimetric comparison of three different treatment techniques in extensive scalp lesion irradiation. Radiother Oncol 2009;91:255-60. https://doi.org/10.1016/j.radonc.2008.09.022
  4. Tung SS, Shiu AS, Starkschall G, Morrison WH, Hogstrom KR. Dosimetric evaluation of total scalp irradiation using a lateral electron-photon technique. Int J Radiat Oncol Biol Phys 1993;27:153-60.
  5. Locke J, Low DA, Grigireit T, Chao KS. Potential of tomotherapy for total scalp treatment. Int J Radiat Oncol Biol Phys 2002;52:553-9. https://doi.org/10.1016/S0360-3016(01)02593-7
  6. Mellenberg DE, Schoeppel SL. Total scalp treatment of mycosis fungoides: the 4 x 4 technique. Int J Radiat Oncol Biol Phys 1993;27:953-8. https://doi.org/10.1016/0360-3016(93)90473-9
  7. Able CM, Mills MD, McNeese MD, Hogstrom KR. Evaluation of a total scalp electron irradiation technique. Int J Radiat Oncol Biol Phys 1991;21:1063-72. https://doi.org/10.1016/0360-3016(91)90751-O
  8. Sagar SM, Pujara CM. Radical treatment of angiosarcoma of the scalp using megavoltage electron beam therapy. Br J Radiol 1992;65:421-4. https://doi.org/10.1259/0007-1285-65-773-421
  9. Akazawa C. Treatment of the scalp using photon and electron beams. Med Dosim 1989;14:129-31. https://doi.org/10.1016/0958-3947(89)90184-2
  10. Bedford JL, Childs PJ, Hansen VN, Warrington AP, Mendes RL, Glees JP. Treatment of extensive scalp lesions with segmental intensity-modulated photon therapy. Int J Radiat Oncol Biol Phys 2005;62:1549-58. https://doi.org/10.1016/j.ijrobp.2005.04.001
  11. Chan MF, Song Y, Burman C, Chui CS, Schupak K. The treatment of extensive scalp lesions combining electrons with intensity-modulated photons. Conf Proc IEEE Eng Med Biol Soc 2006;1:152-5.
  12. Ostheimer C, Janich M, Hubsch P, Gerlach R, Vordermark D. The treatment of extensive scalp lesions using coplanar and non-coplanar photon IMRT: a single institution experience. Radiat Oncol 2014;9:82. https://doi.org/10.1186/1748-717X-9-82
  13. Kinard JD, Zwicker RD, Schmidt-Ullrich RK, Kaufman N, Pieters R. Short communication: Total craniofacial photon shell technique for radiotherapy of extensive angiosarcomas of the head. Br J Radiol 1996;69:351-5. https://doi.org/10.1259/0007-1285-69-820-351
  14. Kelly PJ, Mannarino E, Lewis JH, Baldini EH, Hacker FL. Total dural irradiation: RapidArc versus static-field IMRT: a case study. Med Dosim 2012;37:175-81. https://doi.org/10.1016/j.meddos.2011.06.008
  15. Stang K, Alite F, Steber J, Emami B, Surucu M. Leukemia cutis of the face, scalp, and neck treated with non-coplanar split field volumetric modulated arc therapy: a case report. Cureus. 2015;7:e430.
  16. Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys 2006;64:333-42. https://doi.org/10.1016/j.ijrobp.2005.09.028
  17. Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans: technical note. J Neurosurg 2000;93 Suppl 3:219-22.
  18. Hodapp N. The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther Onkol 2012;188:97-9. https://doi.org/10.1007/s00066-011-0015-x
  19. Gregoire V, Mackie TR. State of the art on dose prescription, reporting and recording in Intensity-Modulated Radiation Therapy (ICRU report No. 83). Cancer Radiother 2011;15:555-9. https://doi.org/10.1016/j.canrad.2011.04.003
  20. The International Commission on Radiation Units and Measurements. J ICRU 2010;10:NP. http://doi.org/10.1093/jicru/ndq001.
  21. Hata M, Wada H, Ogino I, et al. Radiation therapy for angiosarcoma of the scalp: treatment outcomes of total scalp irradiation with X-rays and electrons. Strahlenther Onkol 2014;190:899-904. https://doi.org/10.1007/s00066-014-0627-z
  22. Jumeau R, Renard-Oldrini S, Courrech F, et al. High dose rate brachytherapy with customized applicators for malignant facial skin lesions. Cancer Radiother 2016;20:341-6. https://doi.org/10.1016/j.canrad.2016.03.008
  23. Inoue M, Konno M, Ogawa H, et al. A simpler method for total scalp irradiation: the multijaw-size concave arc technique. J Appl Clin Med Phys 2014;15:4786.
  24. Song JH, Jung JY, Park HW, et al. Dosimetric comparison of three different treatment modalities for total scalp irradiation: the conventional lateral photon-electron technique, helical tomotherapy, and volumetric-modulated arc therapy. J Radiat Res 2015;56:717-26. https://doi.org/10.1093/jrr/rru049
  25. Hu J, Xiao W, He Z, Kang D, Chen A, Qi Z. Target splitting non-coplanar RapidArc radiation therapy for a diffuse sebaceous carcinoma of the scalp: a novel delivery technique. Radiat Oncol 2014;9:204. https://doi.org/10.1186/1748-717X-9-204
  26. Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res 2003;63:4021-7.
  27. Gondi V, Tome WA, Mehta MP. Why avoid the hippocampus? A comprehensive review. Radiother Oncol 2010;97:370-6. https://doi.org/10.1016/j.radonc.2010.09.013

Cited by

  1. Dosimetric effects of sectional adjustments of collimator angles on volumetric modulated arc therapy for irregularly-shaped targets vol.12, pp.4, 2016, https://doi.org/10.1371/journal.pone.0174924
  2. Gamma analysis with a gamma criterion of 2%/1 mm for stereotactic ablative radiotherapy delivered with volumetric modulated arc therapy technique: a single institution experience vol.8, pp.44, 2017, https://doi.org/10.18632/oncotarget.18530
  3. Fabrication of a Patient-Customized Helmet with a Three-Dimensional Printer for Radiation Therapy of Scalp vol.28, pp.3, 2016, https://doi.org/10.14316/pmp.2017.28.3.100
  4. Optimal collimator rotation based on the outline of multiple brain targets in VMAT vol.13, pp.None, 2016, https://doi.org/10.1186/s13014-018-1039-5
  5. Discrepancies in Dose-volume Histograms Generated from Different Treatment Planning Systems vol.43, pp.2, 2018, https://doi.org/10.14407/jrpr.2018.43.2.59
  6. Dosimetric and radiobiological comparison in different dose calculation grid sizes between Acuros XB and anisotropic analytical algorithm for prostate VMAT vol.13, pp.11, 2016, https://doi.org/10.1371/journal.pone.0207232
  7. Angiosarcoma of the Scalp and Face: A Dosimetric Comparison of HDR Surface Applicator Brachytherapy and VMAT vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/7615248
  8. Novel strategy with the automatic non-coplanar volumetric-modulated arc therapy for angiosarcoma of the scalp vol.15, pp.1, 2016, https://doi.org/10.1186/s13014-020-01614-3
  9. A successful approach for angiosarcoma of the scalp using helical tomotherapy and customized surface mold brachytherapy : A case report vol.100, pp.49, 2016, https://doi.org/10.1097/md.0000000000028210
  10. Efficacy of tangential irradiation with volumetric modulated arc therapy on scalp angiosarcoma using medical linac vol.91, pp.None, 2016, https://doi.org/10.1016/j.ejmp.2021.10.012