• Title/Summary/Keyword: Total scalp irradiation

Search Result 6, Processing Time 0.021 seconds

Sutured bolus application technique for homogeneous scalp irradiation (균일한 두피 방사선 치료를 위한 bolus 적용 방법: Sutured bolus)

  • Seo, Myung Ho;Lee, Sol Min;Kim, Gwi Eon;Choi, Jinhyun;Park, So Hyun;Kim, Young Suk
    • Journal of Medicine and Life Science
    • /
    • v.16 no.1
    • /
    • pp.23-26
    • /
    • 2019
  • Total scalp irradiation is a challenging treatment because of unique concave target volume and difficulty with bolus applying. There are few reports about bolus applying methods to the entire scalp in detail. Application of conventional bolus (wax or superflab) is widely used, and it is considered effective. However, the curvature and irregularity of the scalp can produce significant air gap, resulting in inadequate radiation dose distribution. We describe a new method to applying the bolus to the entire scalp. We sutured 1 cm thickness superflab bolus on the thermoplastic mask using cotton string. This method can reduce the air gap between the bolus and scalp and be reproducible.

Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

  • Ostheimer, Christian;Hubsch, Patrick;Janich, Martin;Gerlach, Reinhard;Vordermark, Dirk
    • Radiation Oncology Journal
    • /
    • v.34 no.4
    • /
    • pp.313-321
    • /
    • 2016
  • Purpose: Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT). Materials and Methods: A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan. Results: VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8%-88.4% in coplanar, 77.5%-88.2% in non-coplanar IMRT and 82.8%-90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT). Conclusion: Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

Comparison of Three Different Helmet Bolus Device for Total Scalp Irradiation (Total Scalp의 방사선 치료 시 Helmet Bolus 제작방법에 관한 연구)

  • Song, Yong-Min;Kim, Jong-Sik;Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young;Park, Su-Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Purpose: This study evaluated the usefulness of Helmet bolus device using Bolx-II, paraffin wax, solid thermoplastic material in total scalp irradiation. Materials and Methods: Using Rando phantom, we applied Bolx-II (Action Products, USA), paraffin wax (Densply, USA), solid thermoplastic material (Med-Tec, USA) on the whole scalp to make helmet bolus device. Computed tomography (GE, Ultra Light Speed16) images were acquired at 5 mm thickness. Then, we set up the optimum treatment plan and analyzed the variation in density of each bolus (Philips, Pinnacle). To evaluate the dose distribution, Dose-homogeneity index (DHI, $D_{90}/D_{10}$) and Conformity index (CI, $V_{95}/TV$) of Clinical Target Volume (CTV) using Dose-Volume Histogram (DVH) and $V_{20}$, $V_{30}$ of normal brain tissues. we assessed the efficiency of production process by measuring total time taken to produce. Thermoluminescent dosimeters (TLD) were used to verify the accuracy. Results: Density variation value of Bolx-II, paraffin wax, solid thermoplastic material turned out to be $0.952{\pm}0.13g/cm^3$, $0.842{\pm}0.17g/cm^3$, $0.908{\pm}0.24g/cm^3$, respectively. The DHI and CI of each helmet bolus device which used Bolx-II, paraffin wax, solid thermoplastic material were 0.89, 0.85, 0.77 and 0.86, 0.78, 0.74, respectively. The result of Bolx-II was the best. $V_{20}$ and $V_{30}$ of brain tissues were 11.50%, 10.80%, 10.07% and 7.62%, 7.40%, 7.31%, respectively. It took 30, 120, 90 minutes to produce. The measured TLD results were within ${\pm}7%$ of the planned values. Conclusion: The application of helmet bolus which used Bolx-II during total scalp irradiation not only improves homogeneity and conformity of Clinical Target Volume but also takes short time and the production method is simple. Thus, the helmet bolus which used Bolx-II is considered to be useful for the clinical trials.

  • PDF

A Comparative Evaluation of Dosal Usefulness in Total Scalp Irradiation according to Treatment Plans and Methods (총 두피 방사선치료 시 치료계획 방법에 따른 선량적 유용성 비교 평가)

  • Park byeal nim;Jung dong min;Kwon yong jae;Cho yong wan;Kim se young;Park kwang soon;Park ryeong hwang;Baek jong geol
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.34
    • /
    • pp.43-50
    • /
    • 2022
  • Objective: The purpose of this study is to choose a treatment plan and equipment to maximize tangential irradiation to protect the normal brain tissues as much as possible during total scalp irradiation. Subjects and Methods: After zoning the total scalp of a phantom and selecting a target area for treatment, the study made a Helical TomoTherapy(HT) plan, a Helical TomoTherapy with a Complete Block(HTCB) plan, and a Volumetric Modulated Arc Therapy(VMAT) plan. All of these plans made sure that the volume of a treatment plan with 95% of a prescription dose(40 Gy) would not exceed 95% of the entire volume and that Dmax would not be more than 110% of the prescription dose. The therapy plans compared doses among organs at risk of damage including the brain. Doses in the brain tissues were assessed based on the volumetric criteria for normal tissues in Emami et al. Results: HT, HTCB, and VMAT had a dose of 21.68 Gy, 13.75 Gy, and 20.89 Gy, respectively, in brain tissues at D33%, a dose of 7.06 Gy, 3.21 Gy, and 7.84 Gy, respectively, at D67%, and a dose of 3.14 Gy, 1.75 Gy, and 3.84 Gy, respectively, at D100%. They recorded a Dmean of 16.64 Gy, 11.78 Gy, and 16.64 Gy, respectively. These results show that the overall dose was low in the HTCB plan. When the volume of a low dose was calculated based on 5 Gy, they recorded 87%, 49%, and 96%, respectively, in V5Gy. In addition, the maximum dose in the remaining organ(brain stem, hippocampus, and both lenses) except for the optic pathway was the lowest in HTCB Conclusion: The findings demonstrate that TomoTherapy with a complete block minimized a dose in organs at risk of damage including the brain and hippocampus on both sides and accordingly reduced the probability of side effects such as radiation-induced brain injuries and a resulting decrease in neurocognitive functions. In addition to total scalp irradiation, if additional studies on ring targets treated in various areas are conducted to establish the benefits of tangential irradiation, it is believed that TomoTherapy using Complete Block can be used to maximize tangential irradiation in treatment planning.

Evaluation of dose variation at the vertex during Total Skin Electron Beam (전신 피부 전자선 조사(TSEB)시 두정부(Vertex)에서의 선량 변화 평가)

  • Jeon Byeong-Chul;An Seung-Kwon;Lee Sang-Gyu;Kim Joo-Ho;Cho Kwang-Hwan;Cho Jung-Hee;Park Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.112-116
    • /
    • 2000
  • Purpose : The vertex scalp is always tangentially irradiated during total skin electron beam(TSEB) This study was discuss to the dose distribution at the vertex scalp and to evaluate the use of an electron reflector. positioned above the head as a means of improving the dose uniformity. Methods and Materials Vetex dosimetry was performed using ion-chamber and TLD. Measurements were 6 MeV electron beam obtained by placing an acrylic beam speller in the beam line. Studies were performed to investigate the effect of electron scattering on vertex dose when a lead reflector $40{\times}40cm$ in area, was positioned above the phantom. Results : The surface dose at the vertex, in the without of the reflector was found to be less than $37.8\%$ of the skin dose. Use of the lead reflector increased this value to $62.2\%$ for the 6 MeV beam. Conclusion : The vertex may be significantly under-dosed using standard techniques for total skin electron beam. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation.

  • PDF

Fractionated Stereotactic Radiation Therapy for Intracranial Benign Tumor : Preliminary Results of Clinical Application (양성 뇌종양의 분할정위 방사선치료 : 임상적 응용의 예비적 결과)

  • Kim Dae Yong;Ahn Yong Chan;Huh Seung Jae;Choi Dong Rak;Nam Jong Hyun;Lee Jung Il;Park Kwan;Nam Do-Hyun;Kim Moon Kyung
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.185-194
    • /
    • 1998
  • Purpose : With the development of stereotactic immobilization systems capable of reliable serial repositioning, fractionated stereotactic radiation therapy (FSRT) offers the Potential for an improved treatment outcome by excellent dose delivery, and dose distribution characteristics with the favorable radiobiological properties of fractionated irradiation. We describe our initial experience using FSRT for the treatment of intracranial benign tumor. Materials and Methods : Between August 1995 and December 1996. 15 patients(7 males and 8 females aged 6-70 years) were treated with FSRT. The patients had the following diagnosis pituitary adenoma(10) including one patient who previously had received radiotherapy, craniopharyngioma (2), acoustic neurinoma (1), meningioma (2). Using the Gill-Thomas-Cosman relocatable head frame and multiple non-coplanar therapy, the daily dose of 2Gy was irradiated at 90% to 100% isodose surface of the isocenter The collimator sizes ranged from 26mm to 70mm. Results : In all patients except one follow-up lost, disease was well-controlled. Acute complication was negligible and no patient experienced cranial nerve neuropathies and radiation necrosis. In overall patient setup with scalp measurements, reproducibility was found to have mean of $1.1{\pm}0.6mm$ from the baseline reading. Conclusion : Relocatable stereotactic system for FSRT is highly reproducible and comfortable. Although the follow-up period was relatively short. FSRT is considered to be a safe and effective radiation technique as the treatment of intracranial tumor. But the fractionation schedule(fraction size, overall treatment time and total dose) still remains to be solved by further clinical trials.

  • PDF