과제정보
연구 과제 주관 기관 : Pamukkale University, Technical Research Council of Turkey (TUBITAK)
참고문헌
- Akkar, S. and Bommer, J.J. (2007), "Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East", Bull. Seism. Soc. Am., 97(2), 511-530. https://doi.org/10.1785/0120060141
- Akkar, S. and Ozen, O. (2005), "Effect of peak ground velocity on deformation demands for SDOF systems", Earthq. Eng. Struct. Dyn., 34(13), 1551-1571. https://doi.org/10.1002/eqe.492
- Algan, B.B. (1982), "Drift and damage considerations in earthquake resistant design of reinforced concrete buildings", Ph.D. Dissertation, Univ. of Illinois, Urbana, Ill.
- ATC-40 (1996), Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, Washington DC, USA.
- Benjamin, J.R. (1988), "A criterion for determining exceedance of the Operating Basis Earthquake", EPRI Report NP-5930, Electric Power Research Institute, Palo Alto, California.
- Bilgin, H. (2015), "Generation of fragility curves for typical RC health care facilities: emphasis on hospitals in Turkey", J. Perform. Constr. Facil., doi:10.1061/(ASCE)CF.1943-5509.0000806, 04015056.
- Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R. and Augliera, P. (2014), "Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset", Bull. Earthq. Eng., 12(1), 391-430. https://doi.org/10.1007/s10518-013-9525-5
- BiSpec (2011), Earthquake Solutions, http://www.eqsols.com/Pages/Bispec.aspx
- Boore, D.M. and Atkinson, G.M. (2008), "Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s", Earthq. Spectra, 24(1), 99-138. https://doi.org/10.1193/1.2830434
- Boore, D.M., Stewart, J.P., Seyhan, E. and Atkinson, G.M. (2014), "NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes", Earthq. Spectra, 30(3), 1057-1085. https://doi.org/10.1193/070113EQS184M
- Cabanas, L., Benito, B. and Herraiz, M. (1997), "An approach to the measurement of the potential structural damage of earthquake ground motions", Earthq. Eng. Struct. Dyn., 26, 79-92. https://doi.org/10.1002/(SICI)1096-9845(199701)26:1<79::AID-EQE624>3.0.CO;2-Y
- Cao, V.V. and Ronagh, H.R. (2014a), "Correlation between seismic parameters of far-fault motions and damage indices of low-rise reinforced concrete frames", Soil Dyn. Earthq. Eng., 66, 102-112. https://doi.org/10.1016/j.soildyn.2014.06.020
- Cao, V.V. and Ronagh, H.R. (2014b), "Correlation between parameters of pulse-type motions and damage of low-rise RC frames", Earthq. Struct., 7(3), 365-384. https://doi.org/10.12989/eas.2014.7.3.365
- Elenas, A. (1997), "Interdependency between seismic acceleration parameters and the behavior of structures", Soil Dyn. Earthq. Eng., 16(5), 317-322. https://doi.org/10.1016/S0267-7261(97)00005-5
- Elenas, A. (2000), "Correlation between seismic acceleration parameters and overall structural damage indices of buildings", Soil Dyn. Earthq. Eng., 20(1), 93-100. https://doi.org/10.1016/S0267-7261(00)00041-5
- Elenas, A. and Meskouris, K. (2001), "Correlation study between seismic acceleration parameters and damage indices of structures", Eng. Struct., 23(6), 698-704. https://doi.org/10.1016/S0141-0296(00)00074-2
- Elenas, A., Liolios, A. and Vasiliadis, L. (1995), "Earthquake induced nonlinear behavior of structures in relation with characteristic acceleration parameters", Proceedings of the 10th European Conference on Earthquake Engineering, Vienna.
- Elnashai, A. and Sarno, L.D. (2008), Fundamentals of Earthquake Engineering, John Wiley & Sons Ltd., West Sussex, UK.
- FEMA-356 (2000), Prestandard and commentary for seismic rehabilitation of buildings, Federal Emergency Management Agency, Washington DC, USA.
- FEMA-440 (2005), Improvement of nonlinear static seismic analysis procedures, Federal Emergency Management Agency, Washington DC, USA.
- Gandomi, A.H., Alavi, A.H., Mousavi, M. and Tabatabaei, S.M. (2011), "A hybrid computational approach to derive new ground-motion prediction equations", Eng. Appl. Artif. Intel., 24(4), 717-732. https://doi.org/10.1016/j.engappai.2011.01.005
- Gulkan, P. and Sozen, M.A. (1999), "Procedure for determining seismic vulnerability of building structures", ACI Struct. J., 96(3), 336-342.
- Inel, M., Ozmen, H.B. and Bilgin, H. (2007), "Modelling non-linear behavior of reinforced concrete members", Proceedings of the 6th National Conference on Earthquake Engineering, Vol II: 207-216, Istanbul.
- Inel, M., Ozmen, H.B. and Bilgin, H. (2008), "SEMAp: modelling non-linear behaviour of reinforced concrete members", TUBITAK Project No: 105M024, Ankara, Turkey.
- Inel, M., Meral, E. and Ozmen, H.B. (2014), "Seismic displacement demands of low and mid-rise rc buildings with nonlinear static and dynamic analyses", Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, (Paper ID: 1286), Istanbul, Turkey.
- Jinjun, H.U., Wangcheng, W.U. and Lili, X.I.E. (2013), "Review and analysis of cumulative absolute velocity related parameters of ground motion", J. Earthq. Eng. Vib., 33(5), 1-8.
- Kadas, K., Yakut, A. and Kazaz, I. (2011), "Spectral ground motion intensity based on capacity and period elongation", J. Struct. Eng., 137(3), 401-409. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000084
- Kaklamanos, J. and Baise, L.G. (2011), "Model validations and comparisons of the next generation attenuation of ground motions (NGA-West) project", Bull. Seism. Soc. Am., 101(1), 160-175. https://doi.org/10.1785/0120100038
- Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice- Hall, Englewood, Cliffs, NJ.
- Kramer, S.L. and Mitchell, R.A. (2006), "Ground motion intensity measures for liquefaction hazard evaluation", Earthq. Spectra, 22(2), 413-438. https://doi.org/10.1193/1.2194970
- Liao, W., Loh, C. and Wan, S. (2001), "Earthquake responses of RC moment frames subjected to near-fault ground motions", Struct. Des. Tall Build., 10(3), 219-229. https://doi.org/10.1002/tal.178
- Miranda, E. (1999), "Approximate seismic lateral deformation demands in multistory buildings", J. Struct. Eng., 125(4), 417-425. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(417)
- Moehle, J.P. (1992), "Displacement-based design of RC structures subjected to earthquakes", Earthq. Spectra, 8(3), 403-428. https://doi.org/10.1193/1.1585688
- Moehle, J.P. (1994), "Seismic drift and its role in design", Proceedings of the 5th US-Japan Workshop on the Improvement of Building Structural Design and Construction Practice, San Diego.
- Mohammadnejad, A.K., Mousavi, S.M., Torabi, M., Mousavi, M. and Alavi, A.H. (2012), "Robust attenuation relations for peak time-domain parameters of strong ground motions", Environ. Earth Sci., 67(1), 53-70. https://doi.org/10.1007/s12665-011-1479-9
- Moustafa, A. and Takewaki, I. (2012), "Characterization of earthquake ground motion of multiple sequences", Earthq. Struct., 3(5), 629-647. https://doi.org/10.12989/eas.2012.3.5.629
- Nanos, N., Elenas, A. and Ponterosso, P. (2008), "Correlation of different strong motion duration parameters and damage indicators of reinforced concrete structures", Proceedings of the 14th World Conference on Earthquake Engineering, Bejing.
- Nuttli, O.W. (1979), "The relation of sustained maximum ground acceleration and velocity to earthquake intensity and magnitude", S-71-1 Report 16, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.
- Ozmen, H.B., Inel, M., Akyol, E., Cayci, B.T. and Un, H. (2014), "Evaluations on the relation of RC building damages with structural parameters after May 19, 2011 Simav (Turkey) earthquake", Nat. Haz., 71(1), 63-84. https://doi.org/10.1007/s11069-013-0900-y
- Ozmen, H.B., Inel, M., Senel, S.M. and Kayhan, A.H. (2015), "Load carrying system characteristics of existing Turkish RC building stock", Int. J. Civ. Eng., 13(1), 76-91.
- Ozmen, H.B., Inel, M. and Cayci, B.T. (2013), "Engineering implications of the RC building damages after 2011 Van Earthquakes", Earthq. Struct., 5(3), 297-319. https://doi.org/10.12989/eas.2013.5.3.297
- Ozdemir, G. and Bayhan, B. (2015), "Response of an isolated structure with deteriorating hysteretic isolator model", Res. Eng. Struct. Mater., 1(1), 1-10.
- Pankow, K.L. and Peckmann, J.C. (2004), "The SEA99 ground-motion predictive relations for extensional tectonic regimes: revisions and a new peak ground velocity relation", Bull. Seism. Soc. Am., 94(1), 341-348. https://doi.org/10.1785/0120030010
- PEER Database (2011), http://nisee.berkeley.edu/spl/, University of California, Berkeley.
- Rathje, E.M., Abrahamson, N.A. and Bray, J.D. (1998), "Simplified frequency content estimates of earthquake ground motions", J. Geotech. Geoenviron., 124(2), 150-159. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:2(150)
- Riddell, R. (2007), "On ground motion intensity indices", Earthq. Spectra, 23(1), 147-173. https://doi.org/10.1193/1.2424748
- SAP2000, Integrated Finite Element Analysis and Design of Structures, Computers and Structures Inc., Berkeley, California, USA.
- Sarma, S.K. and Yang, K.S. (1987), "An evaluation of strong motion records and a new parameter A95", Earthq. Eng. Struct., 15(1), 119-132. https://doi.org/10.1002/eqe.4290150109
- Sabetta, F. and Pugliese, A. (1996), "Estimation of response spectra and simulation of nonstationary earthquake ground motion", Bull. Seism. Soc. Am., 86(2), 337-352.
- SeismoSignal (2011), Earthquake Engineering Software Solutions, Chalkida, Greece. http://www.seismosoft.com
- Sucuoglu, H. (1997), "Discussion of An approach to the measurement of the potential structural damage of earthquake ground motions", Earthq. Eng. Struct., 26(12), 1283-1285. https://doi.org/10.1002/(SICI)1096-9845(199712)26:12<1283::AID-EQE704>3.0.CO;2-X
- Takizawa, H. and Jennings, P.C. (1980), "Collapse of a model for ductile reinforced concrete frames under extreme earthquake motions", Earthq. Eng. Struct., 8(2), 117-144. https://doi.org/10.1002/eqe.4290080204
- Theodulidis, N.P. and Papazachos, B.C. (1992), "Dependence of strong ground motion on magnitudedistance, site geology and macroseismic intensity for shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and displacement", Soil Dyn. Earthq. Eng., 11(7), 387-402. https://doi.org/10.1016/0267-7261(92)90003-V
- Travasarou, T., Bray, J.D. and Abrahamson, N.A. (2003), "Empirical attenuation relationship for Arias intensity", Earthq. Eng. Struct., 32(7), 1133-1155. https://doi.org/10.1002/eqe.270
- Tromans, I.J. and Bommer, J.J. (2002), "The attenuation of strong-motion peaks in Europe", Proceedings of the 12th European Conference on Earthquake Engineering, paper no. 394, London.
- Turkish Earthquake Code (TEC-2007) (2007), Specifications for buildings to be built in seismic areas, Ministry of Public Works and Settlement, Ankara,Turkey.
- Uang, C.H. and Bertero, V.V. (1988), Implications of recorded earthquake ground motions on seismic design of buildings structures, Report No. UCB/EERC-88/13, Earthquake Engineering Research Center, University of California, California.
- USGS (2015), www.usgs.gov.
- Villaverde, R. (2007), "Methods to assess the seismic collapse capacity of building structures: state of the art", J. Struct. Eng., 133(1), 57-66. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(57)
- Von Thun, J.L., Rochim, L.H., Scott, G.A. and Wilson, J.A. (1988), "Earthquake ground motions for design and analysis of dams", Earthquake Engineering and Soil Dynamics II - Recent Advances in Ground-Motion Evaluation, Geotechnical Special Publication, 20, 463-481.
- Wald, D.J., Quitoriano, V., Heaton, T.H. and Kanomori, H. (1999), "Relationships between peak ground acceleration peak ground velocity and modified Mercalli intensity in California", Earthq. Spectra, 15(3), 557-564. https://doi.org/10.1193/1.1586058
- Worden, C.B., Gerstenberger, M.C., Rhoades, D.A. and Wald, D.J. (2012), "Probabilistic relationships between ground motion parameters and modified Mercalli Intensity in California", Bull. Seismol. Soc. Am., 102(1), 204-221. https://doi.org/10.1785/0120110156
- Wu, Y.M., Hsiao, N.C. and Teng, T.L. (2004), "Relationship between strong motion peak values and seismic loss during the 1999 Chi-Chi Taiwan earthquake", Nat. Haz., 32(3), 357-373. https://doi.org/10.1023/B:NHAZ.0000035550.36929.d0
- Wu, Y.M., Teng, T.I., Shin, T.C. and Hsiao, N.C. (2003), "Relationship between peak ground acceleration peak ground velocity and intensity in Taiwan", Bull. Seismol. Soc. Am., 93(1), 386-396. https://doi.org/10.1785/0120020097
- Yakut, A. and Yilmaz, H. (2008), "Correlation of deformation demands with ground motion intensity", J. Struct. Eng., ASCE, 134(12), 1818-1828. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:12(1818)
피인용 문헌
- Developing hybrid parameters for measuring damage potential of earthquake records: case for RC building stock vol.15, pp.7, 2017, https://doi.org/10.1007/s10518-016-0080-8
- Assessment and Rehabilitation Issues Concerning Existing 70’s Structural Stock vol.209, 2017, https://doi.org/10.1088/1757-899X/209/1/012100
- An Approach to Develop Compound Intensity Measures for Prediction of Damage Potential of Earthquake Records Using Canonical Correlation Analysis pp.1559-808X, 2018, https://doi.org/10.1080/13632469.2018.1481157
- On the capacity of high, moderate and low earthquake frequency content to cause global drift ratio at level-2 of structural performance vol.258, pp.2261-236X, 2019, https://doi.org/10.1051/matecconf/201925805027
- Studying the Park-Ang damage index of reinforced concrete structures based on equivalent sinusoidal waves vol.72, pp.1, 2016, https://doi.org/10.12989/sem.2019.72.1.083
- Some principles of generating seismic input for calculating structures vol.157, pp.None, 2016, https://doi.org/10.1051/e3sconf/202015706021
- Identifying Optimal Intensity Measures for Predicting Damage Potential of Mainshock-Aftershock Sequences vol.10, pp.19, 2020, https://doi.org/10.3390/app10196795
- Correlation between Ground Motion Parameters and Displacement Demands of Mid-Rise RC Buildings on Soft Soils Considering Soil-Structure-Interaction vol.11, pp.3, 2016, https://doi.org/10.3390/buildings11030125