DOI QR코드

DOI QR Code

Thermal Resistance Characteristics of the Backfill Material with Bottom Ash

저회 되메움재의 열저항 특성

  • Jung, Hyuksang (Department of Railroad and Civil Engineering, Dongyang University) ;
  • Cho, Sam-Deok (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Ju-Hyong (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Jongsik (Daewoo Shipbuilding & Marine Engineering R&D Institute (DSME)) ;
  • Kong, Jin-Young (Geotechnical Engineering Research Division, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2016.03.22
  • Accepted : 2016.04.28
  • Published : 2016.06.01

Abstract

This paper deals with the result of thermal resistance test with backfill materials as bottom ash by using backfill material. Bottom ash, one of coal ashes, can be reused to replace sand because of its similar engineering properties. But without considering the thermal property, the abuse of bottom ash resulted in damage for existing structures. To investigate the thermal conductivity of bottom ash, laboratory tests for thermal resistance of that were carried out in this study. Thermal properties of bottom ash was compared with those of in-situ soil, sand, backfill material which can be applied as filling material. The tests were classified by water contents defined as the major influence factor. The beneficial use method of bottom ash was suggested as backfilling material.

본 논문은 화력발전소 부산물인 저회를 뒤채움재로 활용하고자 열저항 특성에 대한 연구내용을 다루었다. 석탄회의 일종인 저회는 공학적 특성이 모래와 유사하여 모래 대체재로 사용 가능하다. 그러나 열적 특성을 무시한 무분별한 적용은 오히려 기존 구조물에 악영향을 미칠 수 있기 때문에 이에 대한 신중한 선택이 필요하다. 따라서 본 연구에서는 저회의 열전도도를 확인하기 위해 실내시험을 실시하였으며, 뒤채움재로 활용될 수 있는 현장유용토, 성토재료, 모래 등과 열저항 특성에 대하여 비교 분석하였다. 또한, 이들 재료들의 열저항 특성이 함수비에 따라 큰 영향을 미칠 수 있어 이에 대해 분석을 실시하였고 저회가 뒤채움재로 유효 활용될 수 있도록 방안을 제시하였다.

Keywords

References

  1. IEC (1999), IEC60287-3-1, Electric cables, pp. 4-6.
  2. IEEE Std. 442 (1981), IEEE guide for soil thermal resistivity measurements, pp. 2.
  3. IEEE Std. 525 (2007), IEEE guide for the design and installation of cable systems in substations, pp. 26.
  4. Kersten, M. S. (1949), Thermal properties of soil report, Bulletin of the Universty of Minnesota, Institute of Technology, pp. 55.
  5. Lee, C. H., Lee, K. J., Choi, H. S. and Choi, H. B. (2009), Thermal conductivity and viscosity of graphite-added bentonite grout for backfilling ground heat exchanger, Korea Society of Geothermal Energy Engineers, Vol. 5, No. 1, pp. 19-24 (in Korean).
  6. Lee, S. J., Lee, J. H., Cho, H. S. and Chun, B. S. (2012a), An experimental study on thermal conductivity of controlled low strength materials with coal ash, Korean Society of Civil and Environmental, Vol. 32, No. 3C, pp. 95-104 (in Korean).
  7. Lee, J. C., Kim, G. H., Lee, Y. C., Kim, S. D., Choi, Y. K. and Kim, C. F. S. (2012b), Studying soil thermal resistivity in accordance with international standards, The Korean Institute of Illuminating and electrical Installation Engineers, Proceedings of KIIEE Annual Conference, pp. 250-260 (in Korean).
  8. Oh, G. D. and Kim, D. H. (2010), Thermal resistant characteristics of flowable backfill materials using surplus soil for underground power utilities, Korean Geo-Environmental Society Vol. 11, No. 10, pp. 15-24 (in Korean).
  9. Seoul Metropolitan Government (2016), Urban road subsidence cause and reinforcement, Workshop book, pp. 5-26 (in Korean).
  10. Yoshinari, N., Hironori, M., Makoto, U., Hiroshi, S., Takeshi, I. and Satoshi, M. (2007), Development on the mortar material for cable systems in a directional drilling, 7th International Conference on Insulated Power Cable, Jicable, Versailles-France, pp. 684-689.