DOI QR코드

DOI QR Code

Biocompatibility of two experimental scaffolds for regenerative endodontics

  • Leong, Dephne Jack Xin (Faculty of Dentistry, National University of Singapore, and University Dental Cluster (Endodontics), National University Hospital Singapore) ;
  • Setzer, Frank C. (Department of Endodontics, School of Dental Medicine, University of Pennsylvania) ;
  • Trope, Martin (Department of Endodontics, School of Dental Medicine, University of Pennsylvania) ;
  • Karabucak, Bekir (Department of Endodontics, School of Dental Medicine, University of Pennsylvania)
  • 투고 : 2015.11.18
  • 심사 : 2016.02.18
  • 발행 : 2016.05.31

초록

Objectives: The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods: One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of $1.0{\times}10^4$, $2.5{\times}10^4$, and $5.0{\times}10^4$. The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). Results: Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at $5.0{\times}10^4$ hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). Conclusions: The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.

키워드

참고문헌

  1. de Chevigny C, Dao TT, Basrani BR, Marquis V, Farzaneh M, Abitbol S, Friedman S. Treatment outcome in endodontics: the Toronto study-phase 4: initial treatment. J Endod 2008;34:258-263. https://doi.org/10.1016/j.joen.2007.10.017
  2. Ricucci D, Russo J, Rutberg M, Burleson JA, Spangberg LS. A prospective cohort study of endodontic treatments of 1,369 root canals: results after 5 years. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:825-842. https://doi.org/10.1016/j.tripleo.2011.08.003
  3. Nirmalanandhan VS, Levy MS, Huth AJ, Butler DL. Effects of cell seeding density and collagen concentration on contraction kinetics of mesenchymal stem cell-seeded collagen constructs. Tissue Eng 2006;12:1865-1872. https://doi.org/10.1089/ten.2006.12.1865
  4. Nirmalanandhan VS, Rao M, Sacks MS, Haridas B, Butler DL. Effect of length of the engineered tendon construct on its structure-function relationships in culture. J Biomech 2007;40:2523-2529. https://doi.org/10.1016/j.jbiomech.2006.11.016
  5. Chandrahasa S, Murray PE, Namerow KN. Proliferation of mature ex vivo human dental pulp using tissue engineering scaffolds. J Endod 2011;37:1236-1239. https://doi.org/10.1016/j.joen.2011.05.030
  6. Huang GT, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 2008;34:645-651. https://doi.org/10.1016/j.joen.2008.03.001
  7. Zhang W, Walboomers XF, Jansen JA. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-beta1. J Biomed Mater Res A 2008;85:439-444.
  8. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod 2007;33:377-390. https://doi.org/10.1016/j.joen.2006.09.013
  9. Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29-39. https://doi.org/10.22203/eCM.v005a03
  10. Inuyama Y, Kitamura C, Nishihara T, Morotomi T, Nagayoshi M, Tabata Y, Matsuo K, Chen KK, Terashita M. Effects of hyaluronic acid sponge as a scaffold on odontoblastic cell line and amputated dental pulp. J Biomed Mater Res B Appl Biomater 2010;92:120-128.
  11. Zhang W, Walboomers XF, van Kuppevelt TH, Daamen WF, Bian Z, Jansen JA. The performance of human dental pulp stem cells on different three-dimensional scaffold materials. Biomaterials 2006;27:5658-5668. https://doi.org/10.1016/j.biomaterials.2006.07.013
  12. Iohara K, Zheng L, Ito M, Ishizaka R, Nakamura H, Into T, Matsushita K, Nakashima M. Regeneration of dental pulp after pulpotomy by transplantation of CD31(-)/CD146(-) side population cells from a canine tooth. Regen Med 2009;4:377-385. https://doi.org/10.2217/rme.09.5
  13. Iohara K, Murakami M, Takeuchi N, Osako Y, Ito M, Ishizaka R, Utunomiya S, Nakamura H, Matsushita K, Nakashima M. A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2013;2:521-533. https://doi.org/10.5966/sctm.2012-0132
  14. Kodonas K, Gogos C, Papadimitriou S, Kouzi-Koliakou K, Tziafas D. Experimental formation of dentinlike structure in the root canal implant model using cryopreserved swine dental pulp progenitor cells. J Endod 2012;38:913-919. https://doi.org/10.1016/j.joen.2012.02.005
  15. El-Backly RM, Massoud AG, El-Badry AM, Sherif RA, Marei MK. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J 2008;34:52-67. https://doi.org/10.1111/j.1747-4477.2008.00139.x
  16. Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, Foschi F, Dunham J, Skobe Z, Yamazaki H, Kent R, Tanner AC, Amiji MM, Soukos NS. Nanoparticlebased endodontic antimicrobial photodynamic therapy. J Endod 2010;36:322-328. https://doi.org/10.1016/j.joen.2009.10.011
  17. Cheng CF, Lee YY, Chi LY, Chen YT, Hung SL, Ling LJ. Bacterial penetration through antibiotic-loaded guided tissue regeneration membranes. J Periodontol 2009;80:1471-1478. https://doi.org/10.1902/jop.2009.090044
  18. Bottino MC, Kamocki K, Yassen GH, Platt JA, Vail MM, Ehrlich Y, Spolnik KJ, Gregory RL. Bioactive nanofibrous scaffolds for regenerative endodontics. J Dent Res 2013;92:963-969. https://doi.org/10.1177/0022034513505770
  19. Albuquerque MT, Valera MC, Moreira CS, Bresciani E, de Melo RM, Bottino MC. Effects of ciprofloxacincontaining scaffolds on enterococcus faecalis biofilms. J Endod 2015;41:710-714. https://doi.org/10.1016/j.joen.2014.12.025
  20. Kamocki K, Nor JE, Bottino MC. Effects of ciprofloxacincontaining antimicrobial scaffolds on dental pulp stem cell viability-in vitro studies. Arch Oral Biol 2015;60:1131-1137. https://doi.org/10.1016/j.archoralbio.2015.05.002
  21. Huang GT, Al-Habib M, Gauthier P. Challenges of stem cell-based pulp and dentin regeneration: a clinical perspective. Endod Topics 2013;28:51-60. https://doi.org/10.1111/etp.12035
  22. Grossman LI. Polyantibiotic treatment of pulpless teeth. J Am Dent Assoc 1951;43:265-278. https://doi.org/10.14219/jada.archive.1951.0213
  23. Sato T, Hoshino E, Uematsu H, Noda T. In vitro antimicrobial susceptibility to combinations of drugs on bacteria from carious and endodontic lesions of human deciduous teeth. Oral Microbiol Immunol 1993;8:172-176. https://doi.org/10.1111/j.1399-302X.1993.tb00661.x
  24. Hoshino E, Kurihara-Ando N, Sato I, Uematsu H, Sato M, Kota K, Iwaku M. In-vitro antibacterial susceptibility of bacteria taken from infected root dentine to a mixture of ciprofloxacin, metronidazole and minocycline. Int Endod J 1996;29:125-130. https://doi.org/10.1111/j.1365-2591.1996.tb01173.x
  25. Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol 2001;17:185-187. https://doi.org/10.1034/j.1600-9657.2001.017004185.x
  26. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod 2004;30:196-200. https://doi.org/10.1097/00004770-200404000-00003
  27. Windley W 3rd, Teixeira F, Levin L, Sigurdsson A, Trope M. Disinfection of immature teeth with a triple antibiotic paste. J Endod 2005;31:439-443. https://doi.org/10.1097/01.don.0000148143.80283.ea
  28. Dabbagh B, Alvaro E, Vu DD, Rizkallah J, Schwartz S. Clinical complications in the revascularization of immature necrotic permanent teeth. Pediatr Dent 2012;34:414-417.
  29. Bezgin T, Yilmaz AD, Celik BN, Sonmez H. Concentrated platelet-rich plasma used in root canal revascularization: 2 case reports. Int Endod J 2014;47:41-49. https://doi.org/10.1111/iej.12144
  30. Moioli EK, Clark PA, Xin X, Lal S, Mao JJ. Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 2007;59:308-324. https://doi.org/10.1016/j.addr.2007.03.019
  31. Enkel B, Dupas C, Armengol V, Akpe Adou J, Bosco J, Daculsi G, Jean A, Laboux O, LeGeros RZ, Weiss P. Bioactive materials in endodontics. Expert Rev Med Devices 2008;5:475-494. https://doi.org/10.1586/17434440.5.4.475
  32. Kitamura C, Nishihara T, Terashita M, Tabata Y, Washio A. Local regeneration of dentin-pulp complex using controlled release of fgf-2 and naturally derived spongelike scaffolds. Int J Dent 2012;2012:190561.
  33. Yang X, Han G, Pang X, Fan M. Chitosan/collagen scaffold containing bone morphogenetic protein-7 DNA supports dental pulp stem cell differentiation in vitro and in vivo. J Biomed Mater Res A 2012 Feb 18. doi: 10.1002/jbm.a.34064. [Epub ahead of print]
  34. Gilad JZ, Teles R, Goodson M, White RR, Stashenko P. Development of a clindamycin-impregnated fiber as an intracanal medication in endodontic therapy. J Endod 1999;25:722-727. https://doi.org/10.1016/S0099-2399(99)80117-4
  35. Molander A, Dahlen G. Evaluation of the antibacterial potential of tetracycline or erythromycin mixed with calcium hydroxide as intracanal dressing against Enterococcus faecalis in vivo. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:744-750. https://doi.org/10.1016/S1079-2104(03)00361-5
  36. Lin S, Levin L, Peled M, Weiss EI, Fuss Z. Reduction of viable bacteria in dentinal tubules treated with clindamycin or tetracycline. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:751-756. https://doi.org/10.1016/S1079-2104(03)00355-X
  37. Ruparel NB, Teixeira FB, Ferraz CC, Diogenes A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J Endod 2012;38:1372-1375. https://doi.org/10.1016/j.joen.2012.06.018
  38. Chuensombat S, Khemaleelakul S, Chattipakorn S, Srisuwan T. Cytotoxic effects and antibacterial efficacy of a 3-antibiotic combination: an in vitro study. J Endod 2013;39:813-819. https://doi.org/10.1016/j.joen.2012.11.041
  39. Soares Ade J, Lins FF, Nagata JY, Gomes BP, Zaia AA, Ferraz CC, de Almeida JF, de Souza-Filho FJ. Pulp revascularization after root canal decontamination with calcium hydroxide and 2% chlorhexidine gel. J Endod 2013;39:417-420. https://doi.org/10.1016/j.joen.2012.10.005
  40. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol 2002;18:134-137. https://doi.org/10.1034/j.1600-9657.2002.00097.x

피인용 문헌

  1. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs) vol.106, pp.2, 2018, https://doi.org/10.1007/s10266-017-0310-9
  2. In vitro performance of a nanobiocomposite scaffold containing boron-modified bioactive glass nanoparticles for dentin regeneration pp.1530-8022, 2018, https://doi.org/10.1177/0885328218812487
  3. Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches pp.1937-3376, 2018, https://doi.org/10.1089/ten.teb.2018.0073