DOI QR코드

DOI QR Code

Evaluation of satellite-based soil moisture retrieval over the korean peninsula : using AMSR2 LPRM algorithm and ground measurement data

위성기반 토양수분 자료의 한반도 지역 적용성 평가: AMSR2 LPRM 알고리즘과 지점관측 자료를 이용하여

  • Kim, Seongkyun (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Kim, Hyunglok (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Choi, Minha (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.)
  • 김성균 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 김형록 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 최민하 (성균관대학교 수자원전문대학원 수자원학과)
  • Received : 2016.02.04
  • Accepted : 2016.03.17
  • Published : 2016.05.31

Abstract

This study aims at assessing the quality of the Advanced Microwave Scanning Radiometer 2 (AMSR2) soil moisture products onboard GCOM-W1 satellite based on Land Parameter Retrieval Model (LPRM) soil moisture retrieval algorithm with field measurements in South Korea from March to September, 2014. Results of mean bias and root mean square error between AMSR2 LPRM soil moisture products (X-band) and ground measurements showed reasonable value of 0.03 and 0.16. Also, the maximum of the Pearson correlation coefficients was 0.67, which showed good agreement in terms of temporal variability with ground measurements. By comparing AMSR2 soil moisture with in-situ measurement according to the overpass time and band frequency, X-band products on the ascending time outperformed than those of C1-band and C2-band. Furthermore, this study offers an insight into the applicability of the AMSR2 soil moisture products for monitoring various natural disasters at a large scale such as drought and flood.

본 연구에서는 GCOM-W1 위성에 탑재된 Advanced Microwave Scanning Radiometer 2 (AMSR2) 센서의 토양수분 자료를 Land Parameter Retrieval Model (LPRM) 알고리즘을 통해 전처리하여 2014년도 한반도 지점관측 자료와의 비교 분석을 수행, 위성 토양수분 자료의 적합성을 평가하였다. 통계 분석 결과 AMSR2 X-band의 토양수분 자료는 38개의 지점관측 자료와 비교해 0.03의 평균 bias, 0.16의 평균 RMSE의 낮은 오차 수준을 보였으며, 최대상관계수는 0.67로 나타났다. 또한 AMSR2 센서의 ascending, descending 시간대별 위성 토양수분자료 분석과 X, C1, C2-band의 주파수 영역별 위성 토양수분 자료 분석 결과, ascending overpass time 시간대와, X-band 주파수의 토양수분자료가 지점 관측 자료와 더 좋은 상관관계를 보였다. 본 연구의 분석 결과는 한반도에서 최근 문제가 되고 있는 가뭄을 비롯한 각종 재해 분석 시 토양수분의 공간적 분포를 연구하는데 활용 될 수 있을 것으로 기대된다.

Keywords

References

  1. Albergel C., de Rosnay P., Gruhier C., Munoz-Sabater J., Hasenauer S., Isaksen L., Kerr Y., Wagner W. (2012). "Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations." Remote Sensing of Environment, Vol. 118, pp. 215-226. https://doi.org/10.1016/j.rse.2011.11.017
  2. Bolten, J.D., Crow, W.T. (2012). "Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture." Geophys. Res. Lett. Vol. 39, No. 19.
  3. Brocca L., Hasenauer S., Lacava T., Melone F., Moramarco T., Wagner W., Dorigo W., Matgen P., Martinez-Fernandez J., Llorens P., Latron J., Martin C., Bittelli M. (2011). "Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe." Remote Sensing of Environment, Vol. 115, pp. 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  4. Cho, E., Moon, H., Choi, M. (2015). "First Assessment of the Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Contents in Northeast Asia." Journal of the Meteorological Society of Japan, Vol. 93, No. 1, pp. 117-129. https://doi.org/10.2151/jmsj.2015-008
  5. Choi M., Jacobs JM. (2008). "Temporal variability corrections for advanced microwave radiometer E (AMSR-E) surface soil moisture: case study in Little River Region, Georgia. U.S." Sensors. Vol. 8, pp. 2617-2627. https://doi.org/10.3390/s8042617
  6. Choi, M., Jacobs, J.M., Anderson, M.C., Bosch, D.D. (2013). "Evaluation of drought indices via remotely sensed data with hydrological variables." Journal of Hydrology, Vol. 476, pp. 265-273. https://doi.org/10.1016/j.jhydrol.2012.10.042
  7. Crosson, W. L., Limaye, A. S., and Laymon, C. A. (2005). "Parameter sensitivity of soil moisture retrievals from airborne C- and X-band radiometer measurements in SMEX02." IEEE Trans. Geosci. Remote Sens., Vol. 43, pp. 2842-2853. https://doi.org/10.1109/TGRS.2005.857916
  8. Crow, W.T. and Ryu, D. (2009). "A new data assimilation approach for improving runoff prediction using remotely-sensed soil moisture retrievals." Hydrol. Earth Syst. Sci., Vol. 13, pp. 1-16. https://doi.org/10.5194/hess-13-1-2009
  9. Draper, C.S., Walker, J.P., Steinle, P.J., De Jeu, R.A.M., & Holmes, T.R.H. (2009). "An evaluation of AMSR-E derived soil moisture over Australia." Remote Sensing of Environment, Vol. 113, No. 4, pp. 703-710. https://doi.org/10.1016/j.rse.2008.11.011
  10. Fujii, H., Koike, T., & Imaoka, K. (2009). "Improvement of the AMSR-E algorithm for soil moisture estimation by introducing a fractional vegetation coverage dataset derived from MODIS data." Journal of the Remote Sensing Society of Japan, Vol. 29, No. 1, pp. 282-292.
  11. Griesfeller, A., Lahoz, W.A., De Jeu, R.A.M., Dorigo, W., Haugen, L.E., Svendby, T.M., Wagner W. (2016). "Evaluation of satellite soil moisture products over Norway using ground-based observations." International Journal of Applied Earth Observation and Geoinformation, Vol. 45, pp. 155-164. https://doi.org/10.1016/j.jag.2015.04.016
  12. Imaoka, K., Kachi, M., Kasahara, M., Ito, N., Nakagawa, K., & Oki, T. (2010). "Instrument performance and calibration of AMSR-E and AMSR2." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, No. 8, pp. 13-18.
  13. Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., Goodrich,D.C., Moran, M.S., Jinyang, D. (2010). "Validation of advanced microwavescanning radiometer soil moisture products." IEEE Trans. Geosci. Remote Sens, Vo. 48, No. 12, pp. 4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
  14. Kerr, Y. H., Waldteufel, P., Wigneron, J. -P., Delwart, S., Cabot, F., Boutin, J. (2010). "The SMOS mission: New tool for monitoring key elements of the globalwater cycle." Proceedings of the IEEE, Vol. 98, No. 5, pp. 666-687. https://doi.org/10.1109/JPROC.2010.2043032
  15. Kim, H., & Choi, M. (2015a). "An inter-comparison of active and passive satellite soil moisture products in East Asia for dust-outbreak prediction." J.Korean Soc. Hazard Mitig., Vol. 15, No. 4, pp.53-58.
  16. Kim, H., & Choi, M. (2015b). "Impact of soil moisture on dust outbreaks in East Asia: Using satellite and assimilation data." Geophysical Research Letters, Vol. 42, pp. 2789-2796. https://doi.org/10.1002/2015GL063325
  17. Kim, S., Liu, Y.Y., Johnson, F.M., Parinussa, R.M., Sharma, A. (2015). "A global comparison of alternate AMSR2 soil moisture products: Why do they differ?" Remote Sensing of Environment, Vol. 163, pp. 43-62.
  18. Koike, T., Nakamura, Y., Kaihotsu, I., Davva, G., Matsuura, N., Tamagawa, K. (2004). "Development of an advanced microwave scanning radiometer (AMSR-E) algorithm of soil moisture and vegetation water content." Annual Journal of Hydraulic Engineering, JSCE, Vol. 48, No. 2, pp. 217-222. https://doi.org/10.2208/prohe.48.217
  19. Leroux D.J., Kerr Y.H., Al Bitar A., Bindlish R., Jackson T.J., Berthelot B., Portet G. (2013) "Comparison between SMOS, VUA, ASCAT, and ECMWF Soil Moisture Products Over Four Watersheds in U.S." IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 3.
  20. Njoku, E.G., and Entekhabi, D. (1996). "Passive microwave remote sensing of soil moisture." J. Hydrol., vol. 184, pp. 101-129. https://doi.org/10.1016/0022-1694(95)02970-2
  21. Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., Nghiem, S.V. (2003). "Soil moisture retrieval from AMSR- E." IEEE Trans. Geosci. Remote Sens. Vol. 41, No. 2, pp. 215-229. https://doi.org/10.1109/TGRS.2002.808243
  22. Oliva, R., Daganzo, E., Kerr, Y., Mecklenburg, S., Nieto, S., Richaume, P., and Gruhier, C. (2012). "SMOS radio frequency interference scenario: status and actions taken to improve the RFI environment in the 1400-1427 MHz passive band." IEEE T. Geosci. Remote., Vol. 50, pp. 1427-1439. https://doi.org/10.1109/TGRS.2012.2182775
  23. Owe, M., De Jeu, R.A.M., & Holmes, T. (2008). "Multisensor historical climatology of satellite-derived global land surface moisture." Journal of Geophysical Research, Earth Surface, Vol. 113, Issue. F1.
  24. Parinussa, R.M., Meesters, A.G.C.A., Liu, Y., Dorigo, W., Wagner, W., & De Jeu, R.A.M. (2011). "Error estimates for near-real-time satellite soil moisture as derived from the land parameter retrieval model." IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 4, pp. 779-783. https://doi.org/10.1109/LGRS.2011.2114872
  25. Soldo, Y., Khazaal, A., Cabot, F., Kerr, Y. H. (2015). "An RFI Index to Quantify the Contamination of SMOS Data by Radio-Frequency Interference." IEEE Trans. Geosci. Remote Sens, Vol. 9, pp. 1577-1589.
  26. Wagner W, Lemoine G, Rott H. (1999). "A method for estimating soil moisture from ERS scatterometer and soil data." Remote Sens Environ. Vol. 70, pp. 191-207. https://doi.org/10.1016/S0034-4257(99)00036-X
  27. Wigneron, J., Schmugge, T.J., Chanzy, A., Calvet, J., & Kerr, Y. (1998). "Use of passive microwave remote sensing to monitor soil moisture." Agronomie, Vol. 18, No. 1, pp. 27-43. https://doi.org/10.1051/agro:19980102

Cited by

  1. Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate vol.10, pp.11, 2018, https://doi.org/10.3390/rs10111788