DOI QR코드

DOI QR Code

A Study on the Synthesis of p-phenylenediamine (PPD) Using Copper Catalyst

Copper 촉매를 이용한 p-phenylenediamine (PPD) 합성에 관한 연구

  • Kim, Jungsuk (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-yong (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Lee, Jungho (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Choi, Won Choon (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Kang, Na Young (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Park, Sunyoung (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Kim, Kiwoong (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Lim, Jong Sung (Chemical and Biomolecular Engineering, Sogang University) ;
  • Park, Yong-Ki (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology) ;
  • Seo, Hwimin (Center for Carbon Resources Conversion, Korea Research Institute of Chemical Technology)
  • 김정석 (한국화학연구원 탄소자원전환연구센터) ;
  • 이상용 (한국화학연구원 탄소자원전환연구센터) ;
  • 이정호 (한국화학연구원 탄소자원전환연구센터) ;
  • 최원춘 (한국화학연구원 탄소자원전환연구센터) ;
  • 강나영 (한국화학연구원 탄소자원전환연구센터) ;
  • 박선영 (한국화학연구원 탄소자원전환연구센터) ;
  • 김기웅 (한국화학연구원 탄소자원전환연구센터) ;
  • 임종성 (서강대학교 화공생명공학과) ;
  • 박용기 (한국화학연구원 탄소자원전환연구센터) ;
  • 서휘민 (한국화학연구원 탄소자원전환연구센터)
  • Received : 2015.12.02
  • Accepted : 2016.02.05
  • Published : 2016.06.01

Abstract

p-Phenylenediamine (PPD) was synthesized by aromatic amination of p-diiodobenzene (PDIB) using liquid ammonia and Cu-catalysts. The effects of the catalyst, reductant, ammonia quantity and reaction temperature on PPD production were investigated. Cu(I) compounds and Cu powder were selected as catalyst due to a higher selectivity than Cu(II) compounds. As the catalyst quantity increased, rate of PPD production as well as side reaction of aniline decreased with increasing the quantity of ammonia. Reductants such as ascorbic acid, hydrazine and dihydroxyfumaric acid were tested to lower the catalyst loading. The use of reductants resulted in increasing the reaction rate but also increased the amount of aniline The rate of reaction using ascorbic acid or dihydroxyfumaric acid was faster than that using hydrazine. The lowest side reaction of aniline was found in dihydroxyfumaric acid of reductants investigated.

액체 암모니아와 p-diiodobenzene (PDIB)을 반응물로, Cu계 화합물을 촉매로 사용하는Aromatic amination을 이용하여 p-phenylenediamine (PPD)을 합성하였다. 촉매의 종류와 양, 환원제의 종류, 암모니아의 양, 반응 온도가 생성물의 분포에 미치는 영향을 조사하였다. Cu(I) 화합물과 Cu 분말은 촉매로서 작용한 반면 Cu(II) 화합물은 촉매로서 작용하지 않았다. 촉매의 양이 증가할수록 반응속도는 빨라지지만 부반응물인 aniline의 생성량도 증가하였다. Aniline 생성량은 또한 사용한 암모니아의 양이 증가할수록 감소하였다. 촉매 사용량을 줄이기 위해 환원제인 ascorbic acid, hydrazine, dihydroxyfumaric acid를 조촉매로 사용하면 반응속도가 크게 향상되었으나 부반응물인 aniline의 생성량 또한 증가하였다. 사용한 조촉매 중에서는 ascorbic acid와 dihydroxyfumaric acid를 사용하였을 경우가 hydrazine을 사용하였을 경우보다 반응속도가 빨랐고, dihydroxyfumaric acid를 사용하였을 경우 가장 적은 양의 aniline이 생성되었다.

Keywords

References

  1. Stojanovic, D. B., Zrilic, M., Jancic-Heinemann, R., Zivkovic, L., Kojovic, A., Uskokovic, P. S. and Aleksic, R., "Mechanical and Anti-Stabbing Properties of Modified Thermoplastic Polymers Impregnated Multiaxial ${\rho}$-Aramid Fabrics," Polym. Adv. Technol., 24, 772-776(2013). https://doi.org/10.1002/pat.3141
  2. Lee, H. J., "Method for the Preparation of p-Phenelynediamine," Korea Patent No. 2014032191(2014).
  3. Smiley, R. A. Phenylene- and Toluenediamines in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim (2002).
  4. Beletskaya, I. P. and Chepracov, A. V., "The Complementary Competitors: Palladium and Copper in C-N Cross-Coupling Reactions," Organometallics, 31, 7753-7808(2012). https://doi.org/10.1021/om300683c
  5. Seo, H. M., Park, Y. K., Song, B. S. and Noh, H. D., "Method for Manufacturing Phenylenediamine Containing Recovery Process of Iodine," Korea Patent No. 10-1482664(2015).
  6. Shimizu, A. and Yamataka, K., "Method for Producing Iodine or Iodine Derivatives," U.S. Patent No. 4487752(1984).
  7. Herkelmann, R., Rudolph, W. and Seffer, D., "Method of Recovering Iodine," U.S. Patent No. 5356611(1994).
  8. Rule, M., Lane, D. W., Larkins, Jr. T. H. and Tustin, G. C., "Process for Preparing Iodinated Aromatic Compounds", U.S. Patent No. 4746758(1988).
  9. Kim, H. S., Cha, I. H. and Lim, J. B., "Method of Preparing Iodinated Aromatic Compounds with High Yield," Korea Patent No. 10-1123148(2012).
  10. Aubin, Y., Fischmeister, C., Thomas, C. M. and Renaud, J.-L., "Direct Amination of Aryl Halides with Ammonia," Chem. Soc. Rev., 39, 4130-4145(2010). https://doi.org/10.1039/c003692g
  11. Xu, H. and Wolf, C., "Efficient Copper-Catalyzed Coupling of Aryl Chlorides, Bromides and Iodides with Aqueous Ammonia," Chem. Commun., 3035-3037(2009).
  12. Wang, D., Qian, A. B., Cai, A. and Ding, K., "An Efficient Copper-Catalyzed Amination of Aryl Halides by Aqueous Ammonia," Adv. Synth. Catal., 351, 1722-1726(2009). https://doi.org/10.1002/adsc.200900327
  13. Xu, H. J., Liang, Y. F., Cai, Z. Y., Qi, H. X., Yang, C. Y. and Feng, Y. S., "CuI-Nanoparticles-Catalyzed Selective Synthesis of Phenols, Anilines, and Thiophenols from Aryl Halides in Aqueous Solution," J. Org. Chem., 76, 2296-2300(2011). https://doi.org/10.1021/jo102506x
  14. Ji, P., John, H. A. and Michael, I. P., "Copper(I)-Catalyzed Amination of Aryl Halides in Liquid Ammonia," J. Org. Chem., 77, 7471-7478(2012). https://doi.org/10.1021/jo301204t
  15. Mansour, M., Giacovazzi, R., Ouali, A., Taillefer, M. and Jutand, A., "Activation of Aryl Halides by $Cu^0$/1,10-Phenanthroline: $Cu^0$ as Precursor of CuI Catalyst in Cross-Coupling Reactions," Chem. Commun., 6051-6053 (2008).
  16. Cho, H.-K. and Lim, J. S., "Synthesis of ${\rho}$-Phenylenediamine (PPD) Using Supercritical Ammonia," Korean Chem. Eng. Res., 53, 53-56(2015). https://doi.org/10.9713/kcer.2015.53.1.53
  17. Tye, J. W., Weng, Z., Giri, R. and Hartwig, J. F., "Copper(I) Phenoxide Complexes in the Etherification of Aryl Halides," Angew. Chem. Int. Ed., 49, 2185-2189(2010). https://doi.org/10.1002/anie.200902245
  18. Fier, P. S., Luo, J. and Hartwig, J. F., "Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex," J. Am. Chem. Soc., 135, 2552-2559(2013). https://doi.org/10.1021/ja310909q