DOI QR코드

DOI QR Code

다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조

Preparation of Electrically Conductive Composites Filled with Nickel Powder and MWCNT Fillers

  • Kim, Sunghoon (Department of Chemical Engineering, Keimyung University) ;
  • Park, Seonghwan (Department of Chemical Engineering, Keimyung University) ;
  • Kwon, Jaebeom (Department of Chemical Engineering, Keimyung University) ;
  • Ha, KiRyong (Department of Chemical Engineering, Keimyung University)
  • 투고 : 2015.11.24
  • 심사 : 2016.01.19
  • 발행 : 2016.06.01

초록

본 연구에서는 Multi-Walled Carbon Nanotube (MWCNT)와 니켈 분말을 포함하는 전기 전도성 복합체를 제조하여 물성을 비교하였다. 복합체 제조에 앞서, MWCNT 표면을 개질하여 카르복실기(-COOH)와 아미노기($-NH_2$)를 도입하였으며, 표면 개질 혹은 개질되지 않은 MWCNT와 니켈 분말을 diglycidyl ether of bisphenol A (DGEBA)에 분산하여 전기 전도성 복합체를 제조하였다. 그리고 triethylenetetramine (TETA)를 경화제로 사용하여 전도성 복합체와 혼합한 후, doctor blade법으로 코팅하여 전기전도성 변화를 측정하였다. MWCNT의 표면 개질 여부와 에폭시 수지와의 반응여부는 fourier transform infrared (FTIR) spectrometer, thermogravimetric analyzer (TGA) 및 elemental analyzer (EA)로 확인하였으며, 복합체의 표면 형상은 scanning electron microscope (SEM), 복합체의 면 저항 값은 4-point probe로 측정하였다. 그 결과 아미노기로 표면 개질한 MWCNT 0.5 wt%와 40%의 니켈 분말을 사용하여 제조한 복합체의 면 저항 값은 $(9.87{\pm}1.09){\times}10^4{\Omega}/sq$로 니켈 분말만 53.3% 사용하여 제조한 복합체의 면 저항 값과 유사한 값을 나타내었다. 따라서, 0.5%의 아미노기로 개질된 MWCNT를 포함하는 전도성 복합체는 순수 니켈 분말만 사용하는 복합체보다 13.3%의 니켈 분말 함량을 감소할 수 있음을 알았다.

In this study, we prepared electrically conducting composites using epoxy resin of diglycidyl ether of bisphenol A (DGEBA) as a matrix, triethylenetetramine (TETA) as a hardener and nickel powder or multi-walled carbon nanotubes (MWCNTs) grafted with $-NH_2$ groups (MWCNT-$NH_2$) as electrically conducting fillers. Electrical conductivity of composite films were measured by coating on the slide glass with a doctor blade. We measured modification reactions of MWCNT and reaction of MWCNT-$NH_2$ with DGEBA epoxy resin by fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA) and elemental analyzer (EA). Morphology of composites was investigated by scanning electron microscope (SEM) and sheet resistances of composites were measured by 4-point probe. We found $(9.87{\pm}1.09){\times}10^4{\Omega}/sq$ of sheet resistance for epoxy composite containing both 40 wt% nickel powder and 0.5 wt% of MWCNT-$NH_2$ as fillers, equivalent to epoxy composite containing 53.3 wt% nickel powder only as a filler.

키워드

참고문헌

  1. Shin, H. B., Kim, T. J. and Rhee, B. S., "Effects of Fiber Orientation on Reflectivity and Transmittivity of Microwave for Carbon Fiber Reinforced Epoxy Composites," Korean Chem. Eng. Res., 35(5), 667-672(1997).
  2. Park, H. S., "Study about the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites," Korean Chem. Eng. Res., 50(4), 729-732(2012). https://doi.org/10.9713/kcer.2012.50.4.729
  3. Kim, S. W., "Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films," Korean Chem. Eng. Res., 51(3), 382-387(2013). https://doi.org/10.9713/kcer.2013.51.3.382
  4. Kang, C. S., Jee, M. H. and Baik, D. H., "Mechanical and Electrical Properties of Polyurethane Hybrid Nanocomposites Containing MWNT and Graphite as Conducting Nanoparticles," Textile Science and Engineering, 49(3), 174-180(2012). https://doi.org/10.12772/TSE.2012.49.3.174
  5. Kim, D. Y., Yun, K. J. and Lee, Y. S., "Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes," Appl. Chem. Eng., 25(3), 268-273(2014). https://doi.org/10.14478/ace.2014.1021
  6. Heo, S. I., Yun, J. C., Oh, K. S. and Han, K. S., "Electrical and the Mechanical Properties of Graphite Particle/carbon Fiber Hybrid Conductive Polymer Composites," Journal of the Korean Society for Composite Materials, 19(2), 7-12(2006).
  7. Kim, J. B., Lee, S. K. and Kim, C. G., "A study on Carbon Nano Materials as Conductive Fillers for Microwave Absorbers," Journal of the Korean Society for Composite Materials, 19(5), 28-33(2006).
  8. Lee, J. I. and Jung, H. T., "Technical Status of Carbon Nanotubes Composites," Korean Chem. Eng. Res., 46(1), 7-14 (2008).
  9. Ryu, J. H. and Nam, B. U., "Dispersibility of Multi-walled Carbon Nanotubes Functionalized with Butyl and Hexyl Group," Journal of the Korea Academia-Industrial cooperation Society, 11(7), 2713-2718(2010). https://doi.org/10.5762/KAIS.2010.11.7.2713
  10. Kim, S. H., Park, S. H., Kwon, J. B. and Ha, K. R., "Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction," Korean Chem. Eng. Res., 53(1), 83-90(2015). https://doi.org/10.9713/kcer.2015.53.1.83
  11. Kim, J., Im, H. and Kim, J., "The Effect of Surface Modification on the Disperisibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites," Appl. Chem. Eng., 22(3), 266-271(2011).
  12. Seo, M. K. and Park, S. J., "Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites," Korean Chem. Eng. Res., 43(3), 401-406(2005).
  13. Allaois, A., Bai, S., Cheng, H. M., and Bai, J. B., "Mechanical and Electrical Properties of a MWNT/epoxy Composite," Composites Science and Technology, 62(15), 1993-1998(2002). https://doi.org/10.1016/S0266-3538(02)00129-X
  14. Myung, I. H., Chung, I. J. and Lee, J. R., "Chemo-mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine Resin Casting Systems," Polymer(Korea), 24(2), 201-210(2000).
  15. Liu, Y. and Gao, L, "A Study of the Electrical Properties of Carbon Nanotube-$NiFe_2O_4$ Composites: Effect of the Surface Treatment of the Carbon Nanotube," Carbon, 43(1), 47-52(2005). https://doi.org/10.1016/j.carbon.2004.08.019
  16. Mira, I. A. and Kumara, D., "Carbon Nanotube-filled Conductive Adhesives for Electronic Applications," Nanoscience Methods, 1(1), 183-193(2012). https://doi.org/10.1080/17458080.2011.602724
  17. Oh, D. H., Lim, D. J., Lee, J. E., Park, Y. H. and Oh, S. M., "Electrical Properties of Conductive Nickel Powder-Epoxy Resin Composites," J. Korean Oil Chemists' Soc., 31(2), 329-336(2014). https://doi.org/10.12925/jkocs.2014.31.2.329
  18. Shahzad, M., Giorcelli, M., Shahzad, N., Guastella, S., Castellino, M., Jagdale, P. and Tagliaferro, A., "Study of Carbon Nanotubes Base Polydimethylsiloxane Composite Films," Journal of Physics: Conference Series, 439(1), 1-7(2013).
  19. d'Almeida, J., Menezes, G. and Monteiro, S., "Ageing of the DGEBA/TETA Epoxy System with off-Stoichiometric Compositions," Materials Research, 6(3), 415-420(2003). https://doi.org/10.1590/S1516-14392003000300017
  20. Rosu, D., Cascaval, C. N., Mustata, F. and Ciobanu, C., "Cure Kinetics of Epoxy Resins Studied by Non-isothermal DSC Data," Thermochimica Acta, 383(1-2), 119-127(2002). https://doi.org/10.1016/S0040-6031(01)00672-4
  21. Brown, J., Rhoney, I. and Pethrick, R. A., "Epoxy Resin Based Nanocomposites: 1. Diglycidylether of Bisphenol A (DGEBA) with Triethylenetetramine (TETA)," Polym. Int., 53(12), 2130-2137 (2004). https://doi.org/10.1002/pi.1638
  22. Vignoud, L., David, L., Sixou, B. and Vigier, G., "Influence of Electron Irradiation on the Mobility and on the Mechanical Properties of DGEBA/TETA Epoxy Resins," Polymer, 42(10), 4657-4665 (2001). https://doi.org/10.1016/S0032-3861(00)00791-6
  23. Benard, F., Campistron, I., Laguerre, A., Vigier, G. and Laval, F., "Influence of Silica Fillers During the Electron Irradiation of DGEBA/TETA Epoxy Resins, Part II: Study of the Thermomechanical Properties," Polymer Degradation and Stability, 91(9), 2199-2125 (2006).
  24. Gonzalez, M. G., Cabanelas, J. C. and Baselga, J. in Theophile, T., Materials Science, Engineering and Technology: Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake, InTech, Croatia, 265-269(2012).
  25. Silva, W. M., Ribeiro, H., Seara. L. M., Calado, H. D. R., Ferlauto, A. S., Paniago, R. M., Leitec, C. F. and Silva, G. G., "Surface Properties of Oxidized and Aminated Multi-Walled Carbon Nanotubes," J. Braz. Chem. Soc., 23(6), 1078-1086(2012). https://doi.org/10.1590/S0103-50532012000600012
  26. Yang, K. and Gu, M., "The Effects of Triethylenetetramine Grafting of Multi-Walled Carbon Nanotubes on Its Dispersion, Filler-Matrix Interfacial Interaction and the Thermal Properties of Epoxy Nanocomposites," Polym. Eng. Sci., 49(11), 2158-2167(2009). https://doi.org/10.1002/pen.21461
  27. Shokralla, S. A. and Al-Muaikel, "Thermal Properties of Epoxy (Dgeba)/phenolic Resin (Novolac) Blends," The Arabian Journal for Science and Engineering, 35(1B), 7-14(2010).
  28. Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H. and Schulte, K., "Evaluation and Indentification of Electracal and Thermal Conduction Mechanisms in Carbon Nanotube/epoxy Composites," Polymer, 47(6), 2036-2045(2006). https://doi.org/10.1016/j.polymer.2006.01.029
  29. Kim, J. A., Seong, D. G., Kang, T. J. and Youn, J. R., "Effects of Surface Modification on Rheological and Mechanical Properties of CNT/epoxy Composites," Carbon, 44(10), 1898-1905(2006). https://doi.org/10.1016/j.carbon.2006.02.026

피인용 문헌

  1. Effect of Particle Size on Carbon Nanotube Aggregates Behavior in Dilute Phase of a Fluidized Bed vol.6, pp.8, 2018, https://doi.org/10.3390/pr6080121
  2. 시료용액의 특성에 따른 고정화된 단일벽 탄소나노튜브의 전기적 거동 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.115
  3. 유동층 반응기 희박상 내 탄소나노튜브 응집체의 크기 및 형상 측정 vol.55, pp.5, 2017, https://doi.org/10.9713/kcer.2017.55.5.646