DOI QR코드

DOI QR Code

매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping

  • 이준규 (한국에너지기술연구원 수소연구실) ;
  • 김초균 (한국에너지기술연구원 수소연구실) ;
  • 배기광 (한국에너지기술연구원 수소연구실) ;
  • 박주식 (한국에너지기술연구원 수소연구실) ;
  • 강경수 (한국에너지기술연구원 수소연구실) ;
  • 정성욱 (한국에너지기술연구원 수소연구실) ;
  • 김영호 (충남대학교 응용화학공학과) ;
  • 주종훈 (충북대학교 신소재공학과) ;
  • 조원철 (한국에너지기술연구원 수소연구실)
  • Lee, Jun Kyu (Hydrogen Research Center, Korea Institute of Energy Research (KIER)) ;
  • Kim, Cho Gyun (Hydrogen Research Center, Korea Institute of Energy Research (KIER)) ;
  • Bae, Ki Kwang (Hydrogen Research Center, Korea Institute of Energy Research (KIER)) ;
  • Park, Chu Sik (Hydrogen Research Center, Korea Institute of Energy Research (KIER)) ;
  • Kang, Kyoung Soo (Hydrogen Research Center, Korea Institute of Energy Research (KIER)) ;
  • Jeong, Seong Uk (Hydrogen Research Center, Korea Institute of Energy Research (KIER)) ;
  • Kim, Young Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Joo, Jong Hoon (Department of Materials Engineering, Chungbuk National University) ;
  • Cho, Won Chul (Hydrogen Research Center, Korea Institute of Energy Research (KIER))
  • 투고 : 2015.11.03
  • 심사 : 2016.01.25
  • 발행 : 2016.06.01

초록

매체 순환식 수소제조공정은 직접 고순도의 수소를 생산하는 동시에 $CO_2$ 포집 비용을 최소화할 수 있는 고효율/친환경적인 공정이다. 본 공정은 레독스 반응을 통하여 산소를 전달하고 이때 철 산화물계 산소전달입자를 이용하게 된다. 구리 산화물이 첨가된 철-구리 산화물계 산소전달입자는 반응성 향상이 보고되어 왔으나 철 산화물과 구리 산화물 간 상호작용에 대한 이해가 부족한 실정이다. 본 연구에서는 여러 기기 분석법(SEM/EDX, XRD, BET, TPR, XPS, TGA)을 통하여 철-구리 산화물계 산소전달입자의 레독스 반응성 향상을 지배하는 주요인을 연구하였다. 첨가된 구리 산화물은 철 산화물 성장 억제제 역할 뿐만 아니라 화학적 환경 변화를 일으키는 화학적 촉매제(chemical promoter) 역할도 하는 것이 발견되었다. 철-구리 산화물계 산소전달입자의 우수한 환원 반응성은 구리 산화물의 도입으로 $Fe^{2+}$ 농도 증가 및 표면 특성 변화 때문이며, 우수한 물분해 특성은 산화 과정에서 일어나는 철 산화물의 응집을 구리 산화물이 억제시킨 것으로 판단되었다.

$H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.

키워드

참고문헌

  1. Lee, J. K., Kang, K. S., Cho, W. C., Jeong, S. U., Bae, K. K. and Park, B. H., "Calculation of Iodine Crystallization Process in Sulfur-Iodine Cycle for Hydrogen Production", J. Comput. Theor. Nanosci., 10(8), 1722-1726(2013). https://doi.org/10.1166/jctn.2013.3115
  2. Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Kim, W. J., Kim, Y. H., Kim, S. H. and Park, C. S., "Redox Cycling of $CuFe_2O_4$ Supported on $ZrO_2$ and $CeO_2$ for Two-step Methane Reforming/ water Splitting," Int. J. Hydrogen Energy, 35(2), 568-576(2010). https://doi.org/10.1016/j.ijhydene.2009.10.099
  3. Kang, K. S., Kim, C. H., Cho, W. C., Bae, K. K., Kim, S. H. and Park, C. S., "Novel Two-step Thermochemical Cycle for Hydrogen Production from Water Using Germanium Oxide: KIER 4 Thermochemical Cycle," Int. J. Hydrogen Energy, 34(10), 4283-4290(2009). https://doi.org/10.1016/j.ijhydene.2009.03.017
  4. Cho, W. C., Park, C. S., Kang, K. S., Kim, C. H. and Bae, K. K., "Conceptual Design of Sulfur-iodine Hydrogen Production Cycle of Korea Institute of Energy Research," Nucl. Eng. Des., 239(3), 501-507(2009). https://doi.org/10.1016/j.nucengdes.2008.11.017
  5. Ryu, H. J., Bae, D. H., Jo, S. H. and Jin, G. T., "Reaction Characteristics of Ni and NiO based Oxygen Carrier Particles for Chemical-Looping Combustor," Korean J. Chem. Eng. Res., 42(1), 107-114(2004).
  6. Ryu, H. J., Jin, G. T., Jo, S. H. and Bae, D. H., "Comparison of Operating Conditions for Natural Gas Combustion and Syngas Combustion in a 50kWth Chemical-Looping Combustor," Theories and Applications Chem. Eng., 12(2), 259(2006).
  7. Ryu, H. J., Seo, Y. and Jin, G. T., "Natural Gas Combustion Characteristics in a Chemical-Looping Combustor with Three Different Oxygen Carrier Particles," 10th Asian Conference on Fluidized Bed and Three-Phase Reactors, Busan, Korea, November 26-29, 174-179(2006).
  8. Cho, W. C., Seo, M. W., Kim, S. D., Kang, K. S., Bae, K. K., Kim, C. H., Jeong, S. U. and Park, C. S., "Continuous Operation Characteristics of Chemical Looping Hydrogen Production System," Appl. Energy, 113, 1667-1674(2014). https://doi.org/10.1016/j.apenergy.2013.08.078
  9. Mattisson, T. and Lyngfelt, A., "Capture of $CO_2$ Using Chemicallooping Combustion," Scandinavian-Nordic Section of Combustion Institute, 163-168(2001).
  10. Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Kim, S. H. and Park, C. S., "Oxygen-carrier Selection and Thermal Analysis of the Chemical-looping Process for Hydrogen Production," Int. J. Hydrogen Energy, 35(22), 12246-12254(2010). https://doi.org/10.1016/j.ijhydene.2010.08.043
  11. Kang, K. S., Kim, C. H., Bae, K. K., Cho, W. C., Jeong, S. U., Kim, S. H. and Park, C. S., "Modeling a Counter-current Moving Bed for Fuel and Steam Reactors in the TRCL Process," Int. J. Hydrogen Energy, 37(4), 3251-3260(2012). https://doi.org/10.1016/j.ijhydene.2011.11.021
  12. Adanez, J., de Diego, L. F., Garcia-Labiano, F., Gayan, P., Abad, A. and Palacios, J. M., "Selection of Oxygen Carriers for Chemical-looping Combustion," Energy Fuels, 18(2), 371-377(2004). https://doi.org/10.1021/ef0301452
  13. Kang, K. S., Kim, C. H., Cho, W. C., Bae, K. K., Woo, S. W. and Park, C. S., "Reduction Characteristics of $CuFe_2O_4$ and $Fe_3O_4$ by Methane; $CuFe_2O_4$ as An Oxidant for Two-step Thermochemical Methane Reforming," Int. J. Hydrogen Energy, 33(17), 4560-4568 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.054
  14. Cha, K. S., Lee, D. H., Jo, W. J., Lee, Y. S. and Kim, Y. H., "Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums", Transactions of the Korean Hydrogen and New Energy Society, 18(2), 140-150(2007).
  15. Siriwardane, R., Tian, H., Simonyi, T. and Poston, J., "Synergetic Effects of Mixed Copper-iron Oxides Oxygen Carriers in Chemical Looping Combustion," Fuel, 108, 319-333(2013). https://doi.org/10.1016/j.fuel.2013.01.023
  16. Briks, R., Gerald, H. M. and Rederick, S. P., "Introduction to the High Temperature Oxidation of Metals," Cambridge University Press, UK, (2006).
  17. Cho, W. C., Kim, C. G., Jeong, S. U., Park, C. S., Kang, K. S., Lee, D. Y. and Kim, S. D., "Activation and Reactivity of Iron Oxides as Oxygen Carriers for Hydrogen Production by Chemical Looping, " Ind. Eng. Chem. Res., 54(12), 3091-3100(2015). https://doi.org/10.1021/ie504468a
  18. Kidambi, P. R., Cleeton, J. P., Scott, S. A., Dennis, J. S. and Bohn, C. D., "Interaction of Iron Oxide with Alumina in a Composite Oxygen Carrier During the Production of Hydrogen by Chemical Looping," Energy Fuels, 26(1), 603-617(2011). https://doi.org/10.1021/ef200859d
  19. Salje, G. and Feller-Kniepmeier, M., "The Diffusion and Solubility of Copper in Iron," J. Appl. Phys. 48(5), 1833-1839(1977). https://doi.org/10.1063/1.323934
  20. Huang, C. L., Lin, R. J. and Tzeng, J. F., "Dielectric Properties of Copper Oxide Doped $0.95Ba(Zn_{1/3}Ta_{2/3})O_3$-$0.05BaZrO_3$ Ceramics at Microwave Frequency", Mat. Chem. Phys., 97(2), 256-260(2006). https://doi.org/10.1016/j.matchemphys.2005.08.006
  21. Hsu, C. H., Shih, C. F., Yu, C. C., Tung, H. H. and Chung, M. H., "Low Temperature Sintering and Microwave Dielectric Properties of $0.6Ba(Co_{1/3}Nb_{2/3})O_3$-$0.4Ba(Ni_{1/3}Nb_{2/3})O_3$ Ceramics Using Copper Additions," J. Alloys Compd., 461(1), 355-359(2008). https://doi.org/10.1016/j.jallcom.2007.06.092
  22. Zhao, Y., Zhao, Y., Huang, R., Liu, R. and Zhou, H., "Effect of Sintering Temperature on Microstructure and Electric Properties of $0.95(K_{0.5}Na_{0.5})NbO_3$-$0.05Li(Nb_{0.5}Sb_{0.5})O_3$ with Copper Oxide Sintering Aid," J. Am. Ceram. Soc., 94(3), 656-659(2011). https://doi.org/10.1111/j.1551-2916.2010.04353.x
  23. Lin, D., Kwok, K. W. and Chan, H. L. W., "Microstructure, Dielectric and Piezoelectric Properties of $(K_{0.5}Na_{0.5})NbO_3)$-$Ba(Ti_{0.95}Zr_{0.05})O_3$ Lead-free Ceramics with CuO Sintering Aid," Appl. Phys. A, 88(2), 359-363(2007). https://doi.org/10.1007/s00339-007-3967-z
  24. Sun, Z., Zhou, Q. and Fan, L. S., "Formation of Core-shell Structured Composite Microparticles Via Cyclic Gas-solid Reactions, " Langmuir, 29(40), 12520-12529(2013). https://doi.org/10.1021/la4029832
  25. Galinsky, N. L., Shafiefarhood, A., Chen, Y., Neal, L. and Li, F., "Effect of Support on Redox Stability of Iron Oxide for Chemical Looping Conversion of Methane," Appl. Catal. B, 164, 371-379 (2015). https://doi.org/10.1016/j.apcatb.2014.09.023
  26. Galinsky, N. L., Huang, Y., Shafiefarhood, A. and Li, F., "Iron Oxide with Facilitated $O^2$-Transport for Facile Fuel Oxidation and $CO_2$ Capture in a Chemical Looping Scheme", ACS Sustain. Chem. Eng., 1(3), 364-373(2013). https://doi.org/10.1021/sc300177j
  27. Grosvenor, A. P., Kobe, B. A., Biesinger, M. C. and McIntyre, N. S., "Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds," Surf. Interface Anal., 36(12), 1564-1574(2004). https://doi.org/10.1002/sia.1984
  28. Zhan, S., Qiu, M., Yang, S., Zhu, D., Yu, H. and Li, Y., "Facile Preparation of $MnO_2$ doped $Fe_2O_3$ Hollow Nanofibers for Low Temperature SCR of $NO_x $ with $NH_3$", J. Mater. Chem. A, 2(48), 20486-20493(2014). https://doi.org/10.1039/C4TA04807E
  29. Peng, Y., Li, J., Chen, L., Che, J., Han, J., Zhang, H. and Hanl, W., "Alkali Metal Poisoning of a $CeO_2$-$WO_3$ Catalyst Used in the Selective Catalytic Reduction of $NO_x$ with $NH_3$: an Experimental and Theoretical Study," Environ. Sci. Technol., 46(5), 2864-2869 (2012). https://doi.org/10.1021/es203619w
  30. Grzybek, T., Klinik, J., Papp, H. and Baerns, M., "Characterization of Cu and K Containing Fe/Mn Oxide Catalysts for Fischertropsch Synthesis," Chem. Eng. Technol., 13(1), 156-161(1990). https://doi.org/10.1002/ceat.270130122
  31. Li, S., Krishnamoorthy, S., Li, A., Meitzner, G. D. and Iglesia, E., "Promoted Iron-based Catalysts for the Fischer-Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties," J. Catal., 206(2), 202-217(2002). https://doi.org/10.1006/jcat.2001.3506
  32. O'Brien, R. J., Xu, L., Spicer, R. L., Bao, S., Milburn, D. R., Davis, B. H., "Activity and Selectivity of Precipitated Iron Fischer-tropsch Catalysts," Catal. Today, 36(3), 325-334(1997). https://doi.org/10.1016/S0920-5861(96)00246-5
  33. Li, K., Haneda, M., Gu, Z., Wang, H. and Ozawa, M., "Modification of $CeO_2$ on the Redox Property of $Fe_2O_3$," Mater. Lett., 93, 129-132(2013). https://doi.org/10.1016/j.matlet.2012.09.039
  34. Khan, A., Chen, P., Boolchang, P. and Smirniotis, P. G., "Modified Nano-crystalline Ferrites for High-temperature WGS Membrane Reactor Applications," J. Catal., 253(1), 91-104(2008). https://doi.org/10.1016/j.jcat.2007.10.018
  35. Chen, Y. X., Loul, L. P., Jiang, X. Y., Zhou, R. X. and Zheng, X. M., "Studies of the Dispersion State of CuO on $TiO_2$ and $CeO_2$-$TiO_2$ and Activity for NO+CO Reaction," Indian J. Chem., 42, 460-466 (2003).
  36. Zou, H., Dong, X. and Lin, W., "CO Selective Oxidation in Hydrogen-rich Gas over Copper-series Catalysts," J. Nat. Gas Chem., 14(1), 29-34(2005).
  37. Mendiara, T., Abad, A., de Diego, L. F., Garcia-Labiano, F., Gayan, P. and Adanez, J., "Use of an Fe-based Residue from Alumina Production as An Oxygen Carrier in Chemical-looping Combustion," Energy Fuels, 26(2), 1420-1431(2012). https://doi.org/10.1021/ef201458v
  38. Adanez, J., Cuadrat, A., Abad, A., Gayan, P., de Diego, L. F. and Garcia-Labiano, F., "Ilmenite Activation During Consecutive Redox Cycles in Chemical-looping Combustion," Energy Fuels, 24(2), 1402-1413(2010). https://doi.org/10.1021/ef900856d
  39. Tretyakov, Y. D., Komarov, V. F., Prosvirnina, N. A. and Kutsenok, I. B., "Nonstoichiometry and Defect Structres in Copper Oxides and Ferrites," J. Solid. State. Chem., 5(2), 157-167(1972). https://doi.org/10.1016/0022-4596(72)90024-2
  40. He, F. and Li, F., "Perovskite Promoted Iron Oxide for Hybrid Water-splitting and Syngas Generation with Exception Conversion," Energy & Environmental Science, 8(2), 535-539(2015). https://doi.org/10.1039/C4EE03431G
  41. Lynch, M. E., Yang, L., Qin, W., Choi, J. J., Liu, M., Blinn, K. and Liu, M., "Enhancement of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Durability and Surface Electrocatalytic Activity by $La_{0.85}Sr_{0.15}Mn_{O3{\pm}{\delta}$ Investigated Using a New Test Electrode Platform," Energy. Environ., 4(6), 2249-2258(2011). https://doi.org/10.1039/c1ee01188j
  42. Go, K. S., Son, S. R. and Kim, S. D., "Reaction Kinetics of Reduction and Oxidation of Metal Oxdies for Hydrogen Production," Int. J. of Hydrogen Energy, 33(21), 5986-5995(2008). https://doi.org/10.1016/j.ijhydene.2008.05.039