DOI QR코드

DOI QR Code

인플루엔자 바이러스 검출을 위한 종이 기반 neuraminidase 효소 활성 평가 센서 개발

Paper-Based Neuraminidase Assay Sensor for Detection of Influenza Viruses

  • Hwang, Cheol-hwan (Department of Chemical Engineering, Soongsil University) ;
  • Jeong, Seong-Geun (Department of Chemical Engineering, Chungnam National University) ;
  • Park, Han-Kyu (Department of Chemical Engineering, Soongsil University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, Yun-Gon (Department of Chemical Engineering, Soongsil University)
  • 투고 : 2015.12.06
  • 심사 : 2016.01.14
  • 발행 : 2016.06.01

초록

본 연구에서는 인플루엔자 바이러스 표면에 존재하는 neuraminidase 효소의 활성을 평가 할 수있는 종이칩 기반의 분석 시스템을 구축하였다. 종이칩의 장점을 살려 분석 전문가와 장비 없이 현장 진단(Point-of-care)이 가능하도록 X-Neu5Ac 기질을 이용한 비색분석법을 통해 시료 내 neuraminidase 효소의 존재를 정량적으로 확인 할 수 있도록 설계 및 제작하였다. Neuraminidase 효소의 활성을 확인할 수 있는 종이칩 센서(Paper-based neuraminidase assay sensor; PNAS) 성능 실험 결과 neuraminidase를 0.004 U/mL 농도부터 검출 가능하였으며, 인간 혈청에 각기 다른 농도로 존재하는 neuraminidase 효소의 양을 활성 평가를 통해 정량적으로 검출할 수 있음을 입증하였다($R^2$ > 0.99). 또한, 보관기간에 따른 종이칩의 안정성 평가 결과 빛이 차단 된 $4^{\circ}C$ 환경에서 보관 시 70일까지 초기 성능이 안정하게 유지됨을 확인하였다. 마지막으로, PNAS 상에서 효소 반응의 신뢰성 평가를 위해 미카엘리스-멘텐 동역학 (Michaelis-Menten kinetics)을 적용하여 X-Neu5Ac 기질에 대한 neuraminidase의 동역학 분석 결과 $K_m$ 값은 $8.327{\times}10^{-3}M$으로 확인되었으며, 이 값은 용액상에서의 효소 반응 속도 계산으로부터 산출된 값과($K_m=8.327{\times}10^{-3}M$) 근사한 수치임을 확인하였다. 본 연구로부터 개발된 종이칩 기반의 neuraminidase 효소 활성 평가 시스템은 인플루엔자 바이러스의 신속하고 안전한 검출에 다양하게 응용 될 수 있을 것으로 생각된다.

In this study, we described a paper-based neuraminidase assay sensor (PNAS) which can be applied to detect the infection by influenza viruses. The PNAS was designed and manufactured to quantitatively identify the levels of neuraminidase in the sample, which is based on colorimetric analysis using the X-Neu5Ac substrate. The limit of detection of the PNAS was determined as 0.004 U/mL of neuraminidase. According to the amount of neuraminidase in human serum, the PNAS could monitor the enzyme activity with a good linearity ($R^2$ > 0.99). In addition, the initial performance of the PNAS has been maintained up to 70 days in the $4^{\circ}C$. Finally, we demonstrated whether the Michaelis-Menten kinetics is applied to the PNAS, which can show the reliability of the enzyme reactions. The kinetic studies indicated that the PNAS provides the good condition for enzyme reactions ($K_m=8.327{\times}10^{-3}M$), but they were performed on paper chip nonetheless. The paper-based neuraminidase assay sensor may be useful in a wide range of rapid and safe detection of influenza virus.

키워드

참고문헌

  1. Harper, S. A., Fukuda, K., Uyeki, T. M., Cox, N. J. and Bridges, C. B., "Prevention and Control of Influenza," MMWR Prev Control, 53, 1-40(2004).
  2. Katagiri, S., Ohizumi, A. and Homma, M., "An Outbreak of Type C Influenza in a Children's Home," J. Infect. Dis., 148(1), 51-56 (1983). https://doi.org/10.1093/infdis/148.1.51
  3. Matsuzaki, Y., Katsushima, N., Nagai, Y., Shoji, M., Itagaki, T., Sakamoto, M., Kitaoka, S., Mizuta, K. and Nishimura, H., "Clinical Features of Influenza C Virus Infection in Children," J. Infect. Dis., 193(9), 1229-1235(2006). https://doi.org/10.1086/502973
  4. De Jong, J., Rimmelzwaan, G.; Fouchier, R. and Osterhaus, A., "Influenza Virus: a Master of Metamorphosis," J. Infect., 40(3), 218-228(2000). https://doi.org/10.1053/jinf.2000.0652
  5. Das, K., Aramini, J. M., Ma, L.-C., Krug, R. M. and Arnold, E., "Structures of Influenza A Proteins and Insights Into Antiviral Drug Targets," Nat. Struct. Mol. Biol., 17(5), 530-538(2010). https://doi.org/10.1038/nsmb.1779
  6. Moscona, A., "Neuraminidase Inhibitors for Influenza," N. Engl. J. Med., 353(13), 1363-1373(2005). https://doi.org/10.1056/NEJMra050740
  7. Wiley, D. C. and Skehel, J. J., "The Structure and Function of the Hemagglutinin Membrane Glycoprotein of Influenza Virus," Annu. Rev. Biochem., 56(1), 365-394(1987). https://doi.org/10.1146/annurev.bi.56.070187.002053
  8. Horimoto, T. and Kawaoka, Y., "Influenza: Lessons from Past Pandemics, Warnings from Current Incidents," Nat Rev Micro, 3(8), 591-600(2005). https://doi.org/10.1038/nrmicro1208
  9. Benton, D. J., Martin, S. R., Wharton, S. A. and McCauley, J. W., "Biophysical Measurement of the Balance of Influenza A Hemagglutinin and Neuraminidase Activities," J. Biol. Chem., 290(10), 6516-6521(2015). https://doi.org/10.1074/jbc.M114.622308
  10. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. and Klenk, H.-D., "Neuraminidase is Important for the Initiation of Influenza Virus Infection in Human Airway Epithelium," J. Virol., 78(22), 12665-12667(2004). https://doi.org/10.1128/JVI.78.22.12665-12667.2004
  11. Amano, Y. and Cheng, Q., "Detection of Influenza Virus: Traditional Approaches and Development of Biosensors," Anal. Bioanal. Chem., 381(1), 156-164(2005). https://doi.org/10.1007/s00216-004-2927-0
  12. Spackman, E., Senne, D. A., Myers, T., Bulaga, L. L., Garber, L. P., Perdue, M. L., Lohman, K., Daum, L. T. and Suarez, D. L., "Development of a Real-time Reverse Transcriptase PCR Assay for Type A Influenza Virus and the Avian H5 and H7 Hemagglutinin Subtypes," J. Clin. Microbiol., 40(9), 3256-3260(2002). https://doi.org/10.1128/JCM.40.9.3256-3260.2002
  13. Voller, A., Bartlett, A., Bidwell, D., Clark, M. and Adams, A., "The Detection of Viruses by Enzyme-linked Immunosorbent Assay (ELISA)," J. Gen. Virol., 33(1), 165-167(1976). https://doi.org/10.1099/0022-1317-33-1-165
  14. Schafer, W., Pister, L., Hunsmann, G. and Moennig, V., "Comparative Serological Studies on Type C Viruses of Various Mammals," Nature, 245(142), 75-77(1973). https://doi.org/10.1038/245075a0
  15. Bassin, R. H., Tuttle, N. and Fischinger, P. J., "Rapid Cell Culture Assay Technique for Murine Leukaemia Viruses," Nature, 229, 564-566(1971).
  16. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R. and Weigl, B. H., "Microfluidic Diagnostic Technologies for Global Public Health," Nature, 442(7101), 412-418(2006). https://doi.org/10.1038/nature05064
  17. Yager, P., Domingo, G. J. and Gerdes, J., "Point-of-Care Diagnostics for Global Health," Annu. Rev. Biomed. Eng., 10(1), 107-144(2008). https://doi.org/10.1146/annurev.bioeng.10.061807.160524
  18. Gervais, L., de Rooij, N. and Delamarche, E., "Microfluidic Chips for Point-of-Care Immunodiagnostics," Adv. Mater., 23(24), H151-H176(2011). https://doi.org/10.1002/adma.201100464
  19. Boehm, D. A., Gottlieb, P. A. and Hua, S. Z., "On-chip Microfluidic Biosensor for Bacterial Detection and Identification," Sens. Actuators, B, 126(2), 508-514(2007). https://doi.org/10.1016/j.snb.2007.03.043
  20. Fujii, T., "PDMS-based Microfluidic Devices for Biomedical Applications," Microelectron. Eng., 61, 907-914(2002).
  21. Plecis, A. and Chen, Y., "Fabrication of Microfluidic Devices Based on Glass-PDMS-glass Technology," Microelectron. Eng., 84(5), 1265-1269(2007). https://doi.org/10.1016/j.mee.2007.01.276
  22. Huh, Y. S., Choi, B. G. and Hong, W. H., "Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules," Korean Chem. Eng. Res., 50(4), 738-742(2012). https://doi.org/10.9713/kcer.2012.50.4.738
  23. Huh, Y. S., Jeon, S. J., Lee, E. Z., Park, H. S. and Hong, W. H., "Microfluidic Extraction Using Two Phase Laminar Flow for Chemical and Biological Applications," Korean J. Chem. Eng., 28(3), 633-642(2011). https://doi.org/10.1007/s11814-010-0533-8
  24. Parolo, C. and Merkoci, A., "Paper-based Nanobiosensors for Diagnostics," Chem. Soc. Rev., 42(2), 450-457(2013). https://doi.org/10.1039/C2CS35255A
  25. Gomez, F. A., "Paper Microfluidics in Bioanalysis," Bioanalysis, 6(21), 2911-2914(2014). https://doi.org/10.4155/bio.14.240
  26. Martinez, A. W., Phillips, S. T., Whitesides, G. M. and Carrilho, E., "Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices," Anal. Chem., 82(1), 3-10(2010). https://doi.org/10.1021/ac9013989
  27. Jokerst, J. C., Adkins, J. A., Bisha, B., Mentele, M. M., Goodridge, L. D. and Henry, C. S., "Development of a Paper-based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens," Anal. Chem., 84(6), 2900-2907(2012). https://doi.org/10.1021/ac203466y
  28. Carrilho, E., Martinez, A. W. and Whitesides, G. M., "Understanding Wax Printing: a Simple Micropatterning Process for Paperbased Microfluidics," Anal. Chem., 81(16), 7091-7095(2009). https://doi.org/10.1021/ac901071p
  29. Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M. and Whitesides, G. M., "FLASH: a Rapid Method for Prototyping Paperbased Microfluidic Devices," Lab Chip, 8(12), 2146-2150(2008). https://doi.org/10.1039/b811135a
  30. Fujii, I., Iwabuchi, Y., Teshima, T., Shiba, T. and Kikuchi, M., "X-Neu5Ac: A Novel Substrate for Chromogenic Assay of Neuraminidase Activity in Bacterial Expression Systems," Biorg. Med. Chem., 1(2), 147-149(1993). https://doi.org/10.1016/S0968-0896(00)82112-4
  31. Vella, S. J., Beattie, P., Cademartiri, R., Laromaine, A., Martinez, A. W., Phillips, S. T., Mirica, K. A. and Whitesides, G. M., "Measuring Markers of Liver Function Using a Micropatterned Paper Device Designed for Blood from a Fingerstick," Anal. Chem., 84(6), 2883-2891(2012). https://doi.org/10.1021/ac203434x
  32. Cheng, C. M., Martinez, A. W., Gong, J., Mace, C. R., Phillips, S. T., Carrilho, E., Mirica, K. A. and Whitesides, G. M., "Paper-Based ELISA," Angew. Chem. Int. Ed., 49(28), 4771-4774(2010). https://doi.org/10.1002/anie.201001005
  33. Saito, M., Hagita, H., Iwabuchi, Y., Fujii, I., Ikeda, K. and Ito, M., "Fluorescent Cytochemical Detection of Sialidase Activity Using 5-bromo-4-chloroindol-3-yl-${\alpha}$-dN-acetylneuraminic Acid as the Substrate," Histochem. Cell Biol., 117(5), 453-458(2002). https://doi.org/10.1007/s00418-002-0399-x
  34. Minami, A., Otsubo, T., Ieno, D., Ikeda, K., Kanazawa, H., Shimizu, K., Ohata, K., Yokochi, T., Horii, Y. and Fukumoto, H., "Visualization of Sialidase Activity in Mammalian Tissues and Cancer Detection with a Novel Fluorescent Sialidase Substrate," PLoS One, 9(1), e81941(2014). https://doi.org/10.1371/journal.pone.0081941
  35. Michaelis, L. and Menten, M. L., "Die Kinetik Der Invertinwirkung," Biochem. z, 49(333-369), 352(1913).
  36. Fanjul-Bolado, P., Gonzalez-Garcia, M. B. and Costa-Garcia, A., "Quantitative Analysis of Enzymatic Assays Using Indoxyl-based Substrates," Anal. Bioanal. Chem., 386(6), 1849-1854(2006). https://doi.org/10.1007/s00216-006-0808-4

피인용 문헌

  1. 회전각도를 이용한 알부민 농도 측정용 3차원 종이 칩 vol.58, pp.2, 2016, https://doi.org/10.9713/kcer.2020.58.2.286