DOI QR코드

DOI QR Code

Techno-economic Comparison of Absorption and Adsorption Processes for Carbon Monoxide (CO) Separation from Linze-Donawitz Gas (LDG)

Linze-Donawitz 가스로부터 일산화탄소(CO) 분리를 위한 흡수 및 흡착공정에 대한 기술경제성 비교

  • Received : 2015.08.11
  • Accepted : 2016.01.06
  • Published : 2016.06.01

Abstract

Linze-Donawitz gas (LDG) adjunctively produced in the steel mill contains over 60% of CO. Two processes that recover high purity CO from LDG were considered: COSORB and CO-Pressure swing adsorption (PSA). This study aimed to decide which one is more economically feasible than the other by techno-economic analysis (TEA). From the technical point of view of TEA, the process flow diagram (PFD) was constructed, the mass and energy balances were calculated, and the equipment type and size were determined in order to estimate the total capital investment (TCI) and the total production cost (TPC). From the economic point of view of TEA, economic performance such as return on investment (ROI) and payback period (PBP) was evaluated, and the sensitivity analysis was carried out to identify key factors influencing ROI and PBP. It was found that CO-PSA is more economically feasible due to higher ROI and lower PBP. The CO price highly influenced ROI and PBP.

제철소에서 부생되는 LDG (Linze Donawitz gas) 가스는 일산화탄소(CO)를 60% 이상 포함한다. LDG로부터 CO를 고순도로 분리하는 2가지 공정을 고려하였다: COSORB와 CO-PSA (pressure swing adsorption). 이 연구의 목적은 기술경제성평가(TEA: techno-economic analysis)를 통하여 이 두 공정 중 어떤 공정이 더 경제성이 높은 지를 결정하는 하는 것이었다. TEA의 기술적 측면에서는 초기투자비(TCI: total capital investment)와 총생산비용(TPC: total production cost)을 추정하기 위하여 먼저 공정흐름도(PFD: process flow diagram)를 완성하고, 물질 및 에너지 수지식을 계산한 후, 장치 종류 및 크기를 결정하였다. TEA의 경제성 측면에서는 투자회수율(ROI: return on investment) 및 투자회수기간(PBP: payback period)과 같은 경제성 판단기준을 산출하였고, ROI와 PBP에 가장 큰 영향을 주는 인자들을 찾기 위하여 민감도 분석을 수행하였다. CO-PSA 공정은COSORB 공정 보다 더 높은 ROI와 더 낮은 PBP로 인하여 경제적 우위를 보여주었다. CO의 가격은 ROI와 PBP에 가장 큰 영향을 주는 인자로 파악되었다.

Keywords

References

  1. Kong, H., Qi, E., Li, H., Li, G. and Zhang, X., "An MILP Model for Optimization of Byproduct Gases in the Integrated Iron and Steel Plant," Appl. Energy, 87(7), 2156-2163(2010). https://doi.org/10.1016/j.apenergy.2009.11.031
  2. Kasuya, F. and Tsuji, T., "High Purity CO Gas Separation by Pressure Swing Adsorption," Gas Sep. Purif., 5(4), 242-246(1991). https://doi.org/10.1016/0950-4214(91)80031-Y
  3. Dutta, N. N. and Patil, G. S., "Developments in CO Separation," Gas Sep. Purif., 9(4), 277-283(1995). https://doi.org/10.1016/0950-4214(95)00011-Y
  4. Hogendoorn, J. A., van Swaaij, W. P. M. and Versteeg, G. F., "The Absorption of Carbon Monoxide in COSORB Solutions: Absorption Rate and Capacity," Chem. Eng. J., 59(3), 243-252 (1995).
  5. Poddar, S. K., "Design, Capital Cost and Economics for the Low Rank Coal Study (Volume 1A): Direct Coal Liquefaction-Low Rank Coal Study," U.S. Department of Energy/Bechtel Co., Pittsburgh, Pennsylvania(1995).
  6. Ahn, E.-S., Jang, S.-C., Choi, D.-Y., Kim, S.-H. and Choi, D.-K., "Pure Gas Adsorption Equilibrium for $H_2$/CO/$CO_2$ and Their Binary Mixture on Zeolite 5A," Korean Chem. Eng. Res., 44(5), 460-467(2006).
  7. Ma, J., Li, L., Ren, J. and Li, R., "CO Adsorption on Activated Carbon-Supported Cu-Based Adsorbent Prepared by a Facile Route," Sep. Purif. Technol., 76(1), 89-93(2010). https://doi.org/10.1016/j.seppur.2010.09.022
  8. Choi, J., Kim, K.-H., Park, J.-Y., Ko, D.-J., Baek, J.-H., Kim, S., Lim, D.-H. and Lim, K., "Adsorbent for Carbon Monoxide and Method for Preparing Thereof," Korea Patent No. KR 2015-0008270 A(2015).
  9. Sakuraya, T., Fujii, T., Matsui, S. and Hayashi, S., "Methods for Obtaining High-Purity Carbon Monoxide," European Patent No. EP 0129 444 B1(1990).
  10. Kim, H., Lee, J., Lee, S., Han, J. and Lee, I.-B., "Operating Optimization and Economic Evaluation of Multicomponent Gas Separation Process Using Pressure Swing Adsorption and Membrane Process," Korean Chem. Eng. Res., 53(1), 31-38(2015). https://doi.org/10.9713/kcer.2015.53.1.31
  11. Do, T. X., Lim, Y.-I., Jang, S. and Chung, H.-J., "Hierarchical Economic Potential Approach for Techno-Economic Evaluation of Bioethanol Production from Palm Empty Fruit Bunches," Bioresour. Technol., 189, 224-235(2015). https://doi.org/10.1016/j.biortech.2015.04.020
  12. Park, Y. C., Lee, T.-Y., Park, J. and Ryu, H.-J., "Performance and Economic Analysis of Natural Gas/Syngas Fueled 100 MWth Chemical-Looping Combustion Combined Cycle Plant," Korean Chem. Eng. Res., 47(1), 65-71(2009).
  13. Lee, J. H., Kim, J.-H., Lee, I. Y., Jang, K. R. and Shim, J.-G., "Performance and Economic Analysis of 500 $MW_e$ Coal-Fired Power Plant with Post-Combustion $CO_2$ Capture Process," Korean Chem. Eng. Res., 49(2), 244-249(2011). https://doi.org/10.9713/kcer.2011.49.2.244
  14. Chun, D.-H., Kim, S.-D., Rhim, Y. J. and Lee, S. H., "Economic Analysis of Upgrading Low Rank Coal Process," Korean Chem. Eng. Res., 49(5), 639-643(2011). https://doi.org/10.9713/kcer.2011.49.5.639
  15. Yoo, Y. D., Kim, S. H., Cho, W., Mo, Y. and Song, T., "Basic Economic Analysis for CO-Production Process of DME and Electricity Using Syngas Obtained by Coal Gasification," Korean Chem. Eng. Res., 52(6), 796-806(2014). https://doi.org/10.9713/kcer.2014.52.6.796
  16. Do, T. X., Lim, Y.-I. and Yeo, H., "Techno-Economic Analysis of Biooil Production Process from Palm Empty Fruit Bunches," Energy Convers. Manage., 80, 525-534(2014). https://doi.org/10.1016/j.enconman.2014.01.024
  17. Do, T. X., Lim, Y.-I., Yeo, H., Lee, U.-D., Choi, Y.-T. and Song, J.-H., "Techno-Economic Analysis of Power Plant via Circulating Fluidized-Bed Gasification from Woodchips," Energy, 70, 547-560(2014). https://doi.org/10.1016/j.energy.2014.04.048
  18. Christensen, P. and Dysert, L. R., "Cost Estimate Classification System," AACE (American Association of Cost Engineering) International, Practice No. 17R-97(2011).
  19. Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A. and Bhattacharyya, D., Analysis, Synthesis and Design of Chemical Processes, 4th ed., Prentice Hall, New York(2012).
  20. Towler, G. and Sinnott, R., Chemical Engineering Design, 2nd ed., Elsevier, Boston(2008).
  21. Peters, M. S., Timmerhaus, K. D. and West, R. E., Plant Design and Economics for Chemical Engineers, 5th ed., McGraw-Hill, New York(2003).
  22. Lozowski, D., Ondrey, G., Jenkins, S. and Bailey, M. P., Chemical Engineering Plant Cost Index (CEPCI), Chem. Eng., Access Intelligence LLC(2004-2013).
  23. Perry, R. H. and Green, D. W., Perry's Chemical Engineers' Handbook: Capter 12. Psychrometry, Evaporative Cooling, and Solids Drying, 7th ed., McGraw-Hill, New York(1999).

Cited by

  1. Pd 촉매상에서 일산화탄소 존재 하 수소의 선택적 산화반응: 담체 효과 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.121
  2. Experiment and Modeling of Adsorption of CO from Blast Furnace Gas onto CuCl/Boehmite vol.59, pp.26, 2016, https://doi.org/10.1021/acs.iecr.0c01752
  3. Minimizing CO2 emissions with renewable energy: a comparative study of emerging technologies in the steel industry vol.13, pp.7, 2016, https://doi.org/10.1039/d0ee00787k
  4. Aluminum Species and the Synthesis Mechanism of AlCl3-CuCl-Arene Solutions vol.60, pp.3, 2021, https://doi.org/10.1021/acs.iecr.0c05222
  5. 순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석 vol.59, pp.1, 2021, https://doi.org/10.9713/kcer.2021.59.1.60
  6. Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol vol.14, pp.16, 2021, https://doi.org/10.3390/en14164818