DOI QR코드

DOI QR Code

Optimization of Extraction Conditions of Polyphenolic Compounds from Amaranth Leaf using Statistically-based Optimization

통계학적 최적화를 이용한 아마란스 잎으로부터 폴리페놀 열수추출조건 최적화

  • Jo, Jaemin (Department of Food Science, Sunmoon University) ;
  • Choi, Kanghoon (Department of Food Science, Sunmoon University) ;
  • Shin, Seulgi (Department of Food Science, Sunmoon University) ;
  • Lee, Jihyun (Department of Food Science, Sunmoon University) ;
  • Kim, JinWoo (Department of Food Science, Sunmoon University)
  • Received : 2016.01.23
  • Accepted : 2016.02.06
  • Published : 2016.06.01

Abstract

This study examined the optimization of hot-water extraction conditions for maximizing the total polyphenol compounds (TPC) extracted from amaranth leaf. The effects of three independent variables, including extraction temperature, extraction time and ethanol concentration on TPC were investigated using central composite design (CCD). The concentration of TPC increased with increased levels of extraction temperature and time. The extraction temperature and the ethanol concentration showed the significant effect on TPC production (p<0.05). The predicted values at the optimized condition were acceptable when compared to the experimental values ($R^2=0.9566$). The optimum extraction conditions were as follows: temperature of $90.1^{\circ}C$, time of 50 min and ethanol concentration of 61.6% (v/v) for the maximum TPC of 12.6 mg GAE/g DM.

아마란스 종실 생산의 부산물인 아마란스 잎으로부터 폴리페놀 추출 증대를 위해 열수추출의 주요 공정조건인 추출시간, 추출온도와 에탄올 농도 중심합성법을 이용해 최적화하였다. 폴리페놀의 추출은 추출온도와 시간이 증가함에 따라 증가하였으며 추출에 에탄올 농도와 추출시간이 유의한 효과를 보였다(p<0.05). 열수추출의 에탄올 농도는 61.6 (v/v%)에서 최대 폴리페놀 추출성능을 보이며 농도 증가에 따라 감소하는 경향을 보였다. 중심합성법에 의해 제시 된 2차 회귀방정식의 예측값과 실험값을 비교했을 때 매우 높은 합치도($R^2=0.9566$)를 보였으며 추출온도 $90.1^{\circ}C$, 추출시간 50 min과 에탄올 61.6 (v/v%) 공정조건에서 최대 농도인 12.6 mg GAE/g DM 폴리페놀을 얻을 수 있었다.

Keywords

References

  1. Chon, S. W., Kim, D. K. and Kim. Y. M., "Phenolics Content and Antioxidant Activity of Sprouts in Several Legume Crops," Korean J. of Plant Resour., 26, 159-168(2013). https://doi.org/10.7732/kjpr.2013.26.2.159
  2. Kang, C. D., Park, T. K. and Sim, S. J., "Biological $CO_2$ Fixation to Antioxidant Carotenoids by Photosynthesis Using the Green Microalga Haematococcus Pluvialis," Korean Chem. Eng. Res., 44, 46-51(2006).
  3. Jeong, G. K., Lee, K. M. and Park, D. H., "Study of Antimicrobial and Antioxidant Activities of Rumex crispus Extract," Korean Chem. Eng. Res., 44, 81-86(2006).
  4. Lee, Y. J., Kim, E. O. and Choi, S. W., "Isolation and Identifi-Cation of Antioxidant Polyphenolic Compounds in Mulberry," J. Korea Soc. Food Sci. Nutr., 40, 517-524(2011). https://doi.org/10.3746/jkfn.2011.40.4.517
  5. Jeong, G. T., Yang, H. S., Park, S. H. and Park, D. H., " Optimization of Biodesiel Production from Rapeseed Oil Using Response Surface Methodoloty," Korean J. Biotechnol. Bioeng., 22, 222-227(2007).
  6. Hong, S. Y., Cho, K. S., Jin, Y. I., Yeon, Y. H., Kim, S. J., Nam, J. H., Jeong, J. C., Kwon, O. K. and Sohn,H. B., "Comparison of Growth Characteristics, Antioxidant Activity and Total Phenolic Contents of Amaranthus Species according to the Different Cultivation Regions and Varieties in South Korea," Korean J. Crop Sci., 59, 16-21(2014). https://doi.org/10.7740/kjcs.2014.59.1.016
  7. Lopez-Mejia, A., Lopez-Malo, A. and Palou, E., "Antioxidant Capacity of Extracts from Amaranth (Amaranthus hypochondriacus L.) Seeds or Leaves," Ind. Crops Prod., 53, 55-59(2014). https://doi.org/10.1016/j.indcrop.2013.12.017
  8. Milutinovic, M., Radovanovic, N., corovic, M., Siler-Marinkovic, S., Rajilic-Stojanovic, M. and Dimitrijevic-Brankovic, S., "Optimisation of Microwave-assisted Extraction Parameters for Antioxidants from Waste Achillea Millefolium Dust," Ind. Crops Prod., 77, 333-341(2015). https://doi.org/10.1016/j.indcrop.2015.09.007
  9. Min, D. L., Lim, S. W., Ahn. J. B. and Choi, Y. J., "Optimization of Ethanol Extraction Conditions for Antioxidants from Zizyphus jujuba Mill. Leaves Using Response Surface Methodology," Korean J. Food Sci. Technol., 42, 733-738(2010).
  10. Kim, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50, 879-884(2012). https://doi.org/10.9713/kcer.2012.50.5.879
  11. Adil, I. H., Cetin, H. I., Yener, M. E. and Bayindirli, A., "Subscritical (carbon dioxide+ethanol) Extraction of Polyphenols from Apple and Peach Pomaces, and Determination of the Antioxidant Activities of the Extracts," J. Supercrit. Fluid. 43, 55-63(2007). https://doi.org/10.1016/j.supflu.2007.04.012
  12. Park, J. N., Ali-Nehari, A., Woo, H. C. and Chun, B. S., "Thermal Stabilities of Polyphenols and Fatty Acids in Laminaria japonica Hydrolysates Produced Using Subcritical Water," Korean J. Chem. Eng., 29, 1604-1609(2012). https://doi.org/10.1007/s11814-012-0051-y
  13. Kim, Y. S., Kim, R. S., Moon, J. H., Ji, J. R., Choi, H. D. and Park, Y. K., "Optimization of Extraction Conditions of Polyphenolic Compounds from Apple Pomace by Response Surface Methodology," Korean Soc. Food Sci. Technol., 41, 245-250(2009).
  14. Peiro, S., Gordon, M. H., Blanco, M., Perez-Llamas, F., Segovia, F. and Almajano, M. P., "Modelling Extraction of White Tea Polyphenols: The Influence of Temperature and Ethanol Concentration," Antioxidants, 3, 684-699(2014). https://doi.org/10.3390/antiox3040684
  15. Lee, H. J., Do, J. R., Kwon, J. H. and Kim H.K., "Optimization of Corni fructus Extracts by Response Surface Methodology," Korean Soc. Food Sci. Nutr., 41, 390-395(2012). https://doi.org/10.3746/jkfn.2012.41.3.390

Cited by

  1. 탈지미세조류로부터 초음파추출을 이용한 항산화 물질 생산 공정 최적화 vol.55, pp.4, 2016, https://doi.org/10.9713/kcer.2017.55.4.542