DOI QR코드

DOI QR Code

Synthesis Characteristics of ZnO Powder from Precursors Composed of Nitrate-Citrate Compounds

Nitrate-Citrate 혼합 전구체로부터 ZnO 입자의 합성반응 특성

  • Yang, Si Woo (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Seung Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Lim, Dae Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Yoo, Dong Jun (Department of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (Department of Chemical Engineering, Chungnam National University)
  • 양시우 (충남대학교 화학공학과) ;
  • 이승호 (충남대학교 화학공학과) ;
  • 임대호 (충남대학교 화학공학과) ;
  • 유동준 (충남대학교 화학공학과) ;
  • 강용 (충남대학교 화학공학과)
  • Received : 2015.12.14
  • Accepted : 2016.01.20
  • Published : 2016.06.01

Abstract

Characteristics of self-propagating reaction for the preparation of ZnO powder from precursors composed of nitrate and citrate compounds were examined. The ratio of C/N was maintained in range of 0.7~0.8 to initiate the self-propagating reaction between the reducing citrate and oxidizing nitrate groups. The samples were decomposed thermally by using TGA. The sudden decomposition occurred in the range of X > 0.5 in a very short time with a very sharp decrease of mass, indicating that the self-propagating reaction would occur. Friedman, Ozawa-Flynn-Wall and Vyazovkin methods were employed to predict the activation energy, reaction order and frequency factor of the reaction rate in the rate determining step of X < 0.5 range. The activation energy increased with increasing fractional conversion in the range of 46~130 (kJ/min). The reaction order decreased in the range of 2.9~0.9, while the frequency factor increased in the range of 85~278 ($min^{-1}$), respectively, with increasing the rate of temperature increase.

Nitrate-citrate 혼합 전구체로부터 ZnO 입자 합성을 위한 자체진행 반응(Self-propagating reaction)의 특성을 고찰하였다. 질화물과 Citrate 그룹간의 자체진행 반응을 위해 탄소/질소 성분의 비는 0.7~0.8 수준으로 유지하였으며, 출발물질의 시료를 TGA방법에 의해 열분해하였다. 반응의 후반부인 반응 전환율이 0.5 이상에서 자체진행 반응의 특성을 나타내었으며 시료는 매우 짧은 시간에 많은 열을 방출하며 분해되었다. 반응의 전반부(X<0.5)가 전체반응의 율속단계로 나타났으며, 이 율속단계에서 반응의 특성을 Friedman, Ozawa-Flynn-Wall 그리고 Vyazovkin의 방법들을 사용하여 해석하였다. 율속단계에서 활성화 에너지는 46~130 (kJ/mol)의 범위로 반응 전환율이 증가함에 따라 증가하였으며, 반응차수는 2.9~0.9, 그리고 반응속도의 빈도인자(Frequency factor)는 85~278 ($min^{-1}$)의 범위에서 승온속도가 증가함에 따라 각각 전자는 감소하고 후자는 증가하였다.

Keywords

References

  1. Roy, T. K., Sanyal, D., Bhowmick, D. and Chakrabarti, A., "Temperature Dependent Resistivity Study on Zinc Oxide and the Role of Defects," Mater. Sci. semiconductor Proc., 16, 332-336(2013). https://doi.org/10.1016/j.mssp.2012.09.018
  2. Lee, S. H., Yang, S. W., Lim, D. H., Yoo, D. J., Lee, C. K., Kang, G. M. and Kang, Y., "Characteristics of Continuous Preparation of ZnO Powder in a Micro Drop/bubble Fluidized Reactor," Korean Chem. Eng. Res., 53, 597-602(2015). https://doi.org/10.9713/kcer.2015.53.5.597
  3. Liu, S. Z., Zhang, Y. C., Wang, T. X. and Yang, F. X., "Green Synthesis of Hollow-nanostructured $ZnO_2$ and ZnO," Mater. Lett., 71, 154-156(2012). https://doi.org/10.1016/j.matlet.2011.12.062
  4. Zeng, Y., Qiao, L., Bing, Y., Wen, M., Zou, B., Zheng, W., Zhang, T. and Zou, G., "Development of Microstructure CO Sensor Based on Hierarchically Porous ZnO Nanosheet Thin Films," Sensors & Actuators B : Chem., 173, 897-902(2012). https://doi.org/10.1016/j.snb.2012.05.090
  5. Chaudhari, S. P., Bodade, A. B. and Chaudhari, G. N., "Synthesis, Characterization and Photocatalytic Recital of Nest-like Zinc Oxide Photocatalyst," Korean J. Chem. Eng., 30, 2001-2006(2013). https://doi.org/10.1007/s11814-013-0151-3
  6. Thongrom, B., Amornpitoksuk, P., Suwanboon, S. and Baltrusaitis, T., "Photocatalytic Degradation of Dye by Ag/ZnO Prepared by Reduction of Tollen's Reagent and the Ecotoxicity of Degraded Products," Korean J. Chem. Eng., 31, 587-592(2014). https://doi.org/10.1007/s11814-013-0262-x
  7. Yu, H. F. and Chou, H. Y., "Preparation and Characterization of Dispersive Carbon-coupling ZnO Photocatalysts," Powder Technol., 233, 201-207(2013). https://doi.org/10.1016/j.powtec.2012.09.004
  8. Lu, C. H., Lai, Y. C. and Kale, R. B., "Influence of Alkaline Sources on the Structural and Morphological Properties of Hydrothermally Derived Zinc Oxide Powders," J. Alloys and Comp., 477, 523-528(2009). https://doi.org/10.1016/j.jallcom.2008.10.076
  9. Chakraborty, A., Devi, P. S. and Maiti, H. S., "Preparation of $La_{1-x}Sr_xMnO_3(0{\leq}X{\leq}0.6)$ Powder by Autoignition of Carboxylate-nitrate Gels," Mater. Lett., 20, 63-69(1994). https://doi.org/10.1016/0167-577X(94)90149-X
  10. Chakraborty, A., Devi, P. S., Roy, S. and Maiti, H. S., "Low-temperature Synthesis of Ultrafine $La_{0.8}4Sr_{0.16}MnO_3$ Powder by An Autoignition Process," J. Mater. Res., 9, 986-991(1994). https://doi.org/10.1557/JMR.1994.0986
  11. Chakraborty, A., Devi, P. S. and Maiti, H. S., "Low Temperature Synthesis and Some Physical Properties of Barium-substituted Lanthanum Manganite $La_{1-x}Ba_xMnO_3$)," J. Mater. Res., 10, 918-924(1995). https://doi.org/10.1557/JMR.1995.0918
  12. Bell, R. J., Millar, G. J. and Drennan, J., "Influence of Synthesis Route on the Catalytic Properties of $La_{1-x}Sr_xMnO_3$," Solid State Ionics, 131, 211-220(2000). https://doi.org/10.1016/S0167-2738(00)00668-8
  13. Blank, D. H. A., Kruidhof, H. and Flokstra, J., "Preparation of $YBa_2Cu_3O_{7-{\delta}}$ by Citrate Synthesis and Pyrolysis," J. Phys. D: Appl. Phys., 21, 226-227(1988). https://doi.org/10.1088/0022-3727/21/1/036
  14. Mancic, L., Milosevic, O., Marinkovic, B., Lopez, S. and Rizzo, F., "Rapid Formation of High $T_c$ Phase in Bi-Pb-Sr-Ca-Cu-O System," Physica C: Superconductivity, 341-348, 503-504(2000). https://doi.org/10.1016/S0921-4534(00)00563-3
  15. Friedman, H. L., "Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry. Application to a Phenolic Plastic," J. Poly. Sci.: Part C, 6, 183-195(1964).
  16. Kim, S. J., Lee, C. G., Song, P. S., Yun, J. S., Kang, Y., Kim, J. S. and Choi, M. J., "Characteristics of Pyrolysis and Combution Reaction of Waste Polystyrene," J. Korean Ing. Eng. Chem., 14, 634-640(2003).
  17. Pielichowski, K., "Kinetic Analysis of the Thermal Decomposition of Polyaniline," Solid State Ionics, 104, 123-132(1997). https://doi.org/10.1016/S0167-2738(97)00396-2
  18. Music, S., Dragcevic, S. and Ivanda, M., "Kinetics of Thermal Degradation in Non-isothermal Conditions of Some Phosphoruscontaining Polyesters and Polyesterimides," European Poly. J., 43, 980-988(2007). https://doi.org/10.1016/j.eurpolymj.2006.12.018
  19. Kim, U. Y., Son, S. M., Kang, S. H., Kang, Y., Kim, S. D. and Jung, H., "Characteristics of Stream Gasification and Combustion of Naphtha Tar Pitch," Korean Chem. Eng. Res., 45, 604-610(2007).
  20. Vyazovkin, S. and Wight, C. A., "Isothermal and Non-isothermal Kinetics of Thermally Stimulated Reactions of Solids," Int'l. Rev. Phy. Chem., 17, 407-433(1998). https://doi.org/10.1080/014423598230108
  21. Vyazovkin, S. and Wight, C. A., "Model-free and Model-fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data," Thermochimica Acta, 340-341, 53-68(1999). https://doi.org/10.1016/S0040-6031(99)00253-1
  22. Park, S. W. and Jang, C. H., "Assessment of Combustion Characteristics of Carbonized Sludge Using Non-isothermal Thermogravimetric Analysis," J. Korea Society of Waste Managment., 27, 422-430(2010).