DOI QR코드

DOI QR Code

Electrochemical Properties of Activated Carbon Supercapacitors Adopting Hydrophilic Silica and Hydrogel Electrolytes

친수성 실리카와 하이드로겔 전해질이 적용된 활성탄 수퍼커패시터의 전기화학적 특성

  • Lee, Hae Soo (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Park, Jang Woo (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Yong Min (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ryou, Myung Hyun (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Kwang Man (Research Section of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI)) ;
  • Ko, Jang Myoun (Department of Chemical and Biological Engineering, Hanbat National University)
  • 이해수 (한밭대학교 화학생명공학과) ;
  • 박장우 (한밭대학교 화학생명공학과) ;
  • 이용민 (한밭대학교 화학생명공학과) ;
  • 유명현 (한밭대학교 화학생명공학과) ;
  • 김광만 (한국전자통신연구원 정보통신부품소재연구소 전력제어소자연구실) ;
  • 고장면 (한밭대학교 화학생명공학과)
  • Received : 2015.10.12
  • Accepted : 2015.12.22
  • Published : 2016.06.01

Abstract

A hydrogel electrolyte consisting of 6 M KOH aqueous solution, potassium polyacrylate (PAAK, 3 wt.%), and a hydrophilic silica OX50 (1 wt.%) was prepared to use as an electrolyte medium coated on a Scimat separator of activated carbon supercapacitor. The silica particle distributed homogeneously on surface pores of the separator to increase ionic conductivity and electrochemical stability of the hydrogel electrolyte. The silica addition also involved superior specific capacitance even at higher scan rates due to decrease in interfacial resistance between hydrogel electrolyte and activated carbon electrode.

6M의 KOH 수계 전해액에 potassium polyacrylate (PAAK)가 3 wt.% 포함된 하이드로겔 전해질을 제조하고, 이에 친수성 실리카 OX50을 1 wt.% 포함시킨 하이드로겔 전해질을 함께 제조하고, 이를 Scimat 분리막에 코팅 및 건조하여 활성탄 수퍼커패시터의 자기지지체 전해질/분리막으로 사용하여 그 실리카 첨가효과를 조사하였다. 실리카 입자는 다공성 분리막 지지체의 표면기공에 균일하게 분포하여 하이드로겔의 이온전도도와 전기화학적 안정성을 향상시켰으며 이에 따라 고속스캔 조건에서도 활성탄 수퍼커패시터의 비축전용량이 비교적 높게 유지되었는데, 이는 실리카가 포함된 하이드로겔 전해질이 활성탄 전극과 분리막 사이에서의 계면저항이 감소하기 때문이다.

Keywords

References

  1. Simon, P., Gogotsi, Y. and Dunn, B., "Where Do Batteries End and Supercapacitors Begin?," Science, 343(6176), 1210-1211(2014). https://doi.org/10.1126/science.1249625
  2. Yan, J., Wang, Q., Wei, T. and Fan, Z., "Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities," Adv. Energy Mater., 4(4), art. no. 1300816 (2014).
  3. Wang, G., Zhang, L. and Zhang, J., "A Review of Electrode Materials for Electrochemical Supercapacitors," Chem. Soc. Rev., 41(2), 797-828(2012). https://doi.org/10.1039/C1CS15060J
  4. Yu, Z., Tetard, L., Zhai, L. and Thomas, J., "Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions," Energy Environ. Sci., 8(3), 702-730(2015). https://doi.org/10.1039/C4EE03229B
  5. Beguin, F., Presser, V., Balducci, A. and Frackowiak, E., "Carbon and Electrolytes for Advanced Supercapacitors," Adv. Mater., 26(14), 2219-2251(2014). https://doi.org/10.1002/adma.201304137
  6. Nishiyama, Y. and Satoh, M., "Solvent- and Counterion-Specific Swelling Behavior of Poly(acrylic acid) Gels," J. Polym. Sci. Part B: Polym. Phys., 38(21), 2791-2800(2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2791::AID-POLB80>3.0.CO;2-1
  7. Iwakura, C., Wada, H., Nohara, S., Furukawa, N., Inoue, H. and Morita, M., "New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte," Electrochem. Solid-State Lett., 6(2), A37-A39(2003). https://doi.org/10.1149/1.1535752
  8. Nohara, S., Wada, H., Furukawa, N., Inoue, H., Morita, M. and Iwakura, C., "Electrochemical Characterization of New Electric Double Layer Capacitor with Polymer Hydrogel Electrolyte," Electrochim. Acta, 48(6), 749-753(2003). https://doi.org/10.1016/S0013-4686(02)00744-2
  9. Wada, H., Nohara, S., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H., Morita, M. and Iwakura, C., "Electrochemical Characteristics of Electric Double Layer Capacitor Using Sulfonated Polypropylene Separator Impregnated with Polymer Hydrogel Electrolyte," Electrochim. Acta, 49(27), 4871-4875(2004). https://doi.org/10.1016/j.electacta.2004.05.041
  10. Nohara, S., Asahina, T., Wada, H., Furukawa, N., Inoue, H., Sugoh, N., Iwasaki, H. and Iwakura, C., "Hybrid Capacitor with Activated Carbon Electrode, $Ni(OH)_2$ Electrode and Polymer Hydrogel Electrolyte," J. Power Sources, 157(1), 605-609(2006). https://doi.org/10.1016/j.jpowsour.2005.07.024
  11. Lee, K.-T. and Wu, N.-L, "Manganese Oxide Electrochemical Capacitor with Potassium Poly(acrylate) Hydrogel Electrolyte," J. Power Sources, 179(1), 430-434(2008). https://doi.org/10.1016/j.jpowsour.2007.12.057
  12. Lee, K.-T., Lee, J.-F. and Wu, N.-L., "Electrochemical Characterizations on $MnO_2$ Supercapacitors with Potassium Polyacrylate and Potassium Polyacrylate-co-Polyacrylamide Gel Polymer Electrolytes," Electrochim. Acta, 54(26), 6148-6153(2009). https://doi.org/10.1016/j.electacta.2009.05.065
  13. Nam, H.-S., Wu, N.-L., Lee, K.-T., Kim, K. M., Yeom, C. G., Hepowit, L. R., Ko, J. M. and Kim, J.-D., "Electrochemical Capacitances of a Nanowire-Structured MnO2 in Polyacrylate-Based Gel Electrolytes," J. Electrochem. Soc., 159(6), A899-A903(2012). https://doi.org/10.1149/2.112206jes
  14. Kim, K. M., Nam J. H., Lee, Y.-G., Cho, W. I. and Ko, J. M., "Supercapacitive Properties of Electrodeposited $RuO_2$ Electrode in Acrylic Gel Polymer Electrolytes," Curr. Appl. Phys., 13(8), 1702-1706(2013). https://doi.org/10.1016/j.cap.2013.06.016
  15. Ko, J. M., Nam, J. H., Won, J. H. and Kim, K. M., "Supercapacitive Properties of Electrodeposited Polyaniline Electrode in Acrylic Gel Polymer Electrolytes," Synth. Metals, 189(1), 152-156(2014). https://doi.org/10.1016/j.synthmet.2014.01.011
  16. Latifatu, M., Ko, J. M., Lee, Y.-G., Kim, K. M., Jo, J., Jang, Y., Yoo, J. J. and Kim, J. H., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 51(5), 550-555(2013). https://doi.org/10.9713/kcer.2013.51.5.550
  17. Yoon, C. S., Ko, J. M., Latifatu, M., Lee, H. S., Lee, Y.-G., Kim, K. M., Won, J. H., Jo, J., Jang, Y. and Kim, J. H., "Electrochemical Properties of Activated Carbon Supercapacitor Containing Sulfonated Polypropylene Separator Coated with a Hydrogel Polymer Electrolyte," Korean Chem. Eng. Res., 52(5), 553-557(2014). https://doi.org/10.9713/kcer.2014.52.5.553
  18. Lee, H. S., Kim, K. M., Jang, Y., Kim, K. Y., Yu, J. J., Kim, J. H. and Ko, J. M., "Electrochemical Properties of Activated Carbon Supercapacitor Adopting Rayon/Poly(ethylene oxide) Separator and a Hydrogel Electrolyte," J. Korean Electrochem. Soc., 18(3), 115-120(2015). https://doi.org/10.5229/JKES.2015.18.3.115
  19. Kim, K. M., Latifatu, M., Lee, Y.-G., Ko, J. M., Kim, J. H. and Cho, W. I., "Effect of Ceramic Filler-Containing Polymer Hydrogel Electrolytes Coated on the Polyolefin Separator on the Electrochemical Properties of Activated Carbon Supercapacitor," J. Electroceram., 32(2-3), 146-153(2014). https://doi.org/10.1007/s10832-013-9860-6
  20. Kim, K. M., Hepowit, L. R., Kim, J.-C., Lee, Y.-G. and Ko, J. M., "Enhanced Separator Properties by Coating Alumina Nanoparticles with Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) Binder for Lithium-ion Batteries," Korean J. Chem. Eng., 32(4), 717-722(2015). https://doi.org/10.1007/s11814-014-0268-z
  21. http://www.aerosil.com/.
  22. Cho, W.-J., Yeom, C. G., Kim, B. C., Kim, K. M., Ko, J. M. and Yu, K. H., "Supercapacitive Properties of Activated Carbon Electrode in Organic Electrolytes Containing Single- and Double-Cationic Liquid Salts," Electrochim. Acta, 89, 807-813(2013). https://doi.org/10.1016/j.electacta.2012.10.085
  23. Jung, H. W., Hamenu, L., Lee, H. S., Latifatu, M., Kim, K. M. and Ko, J. M., "Supercapacitive Properties of Activated Carbon Electrode in Electrolyte Solution with a Lithium-Modified Silica Nanosalt," Curr. Appl. Phys., 15(4), 567-570(2015). https://doi.org/10.1016/j.cap.2015.02.002
  24. Lee, E. J., Lee, Y. J., Kim, J. K., Lee, M., Yi, J., Yoon, J. R., Song, J. C. and Song, I. K., "Oxygen Group-Containing Activated Carbon Aerosol as an Electrode Material for Supercapacitor," Mater. Res. Bull., 70, 209-214(2015). https://doi.org/10.1016/j.materresbull.2015.04.044
  25. Calvo, E. G., Lufrano, F., Staiti, P., Brigandi, A., Arenillas, A. and Menendez, J. A., "Optimizing the Electrochemical Performance of Aqueous Symmetric Supercapacitors Based on an Activated Carbon Xerogel," J. Power Sources, 241, 776-782(2015).
  26. Obreja, V. V. N., "On the Performance of Supercapacitors with Electrodes Based on Carbon Nanotubes and Carbon Activated Materials - A Review," Physica E, 40(7), 2596-2605(2008). https://doi.org/10.1016/j.physe.2007.09.044
  27. Davies, A. and Yu, A., "Material Advancements in Supercapacitors: From Activated Carbon to Carbon Nanotube and Graphene," Can. J. Chem. Eng., 89(6), 1342-1357(2011). https://doi.org/10.1002/cjce.20586
  28. Gu, W. and Yushin, G., "Review of Nanostructured Carbon Materials for Electrochemical Capacitor Applications: Advantages and Limitations of Activated Carbon, Carbide-Derived Carbon, Zeolite-Templated Carbon, Carbon Aerogels, Carbon Nanotubes, Onionlike Carbon, and Graphene," WIREs Energy Environ., 3(5), 424-473(2014). https://doi.org/10.1002/wene.102
  29. Sugimoto, W., Iwata, H., Yokoshima, K., Murakami, Y. and Takasu, Y., "Proton and Electron Conductivity in Hydrous Ruthenium Oxides Evaluated by Electrochemical Impedance Spectroscopy: The Origin of Large Capacitance," J. Phys. Chem. B, 109(15), 7330-7338(2005). https://doi.org/10.1021/jp044252o

Cited by

  1. 고분자-알칼리 전해질이 코팅된 Poly(acrylonitrile) 분리막을 적용한 활성탄 수퍼커패시터 특성 vol.55, pp.4, 2016, https://doi.org/10.9713/kcer.2017.55.4.467
  2. CO2 레이저 환원법과 원자층 증착법을 이용한 VOx/Graphene 복합체 제조 및 전기화학적 성능 평가 vol.58, pp.1, 2020, https://doi.org/10.9713/kcer.2020.58.1.135