참고문헌
- W. Blaschke, Vorlesungen uber Differentialgeometrie, Berlin, Springer-Verlag, 1929.
- T. E. Cecil and S. S. Chern, Dupin submanifolds in Lie sphere geometry, Differential geometry and topology (Tianjin, 19867), 1-48, Lecture Notes in Math., 1369, Springer, Berlin, 1989.
- Z. Guo, J. Fang, and L. Lin, Hypersurfaces with isotropic Blaschke tensor, J. Math. Soc. Japan 63 (2011), no. 4, 1155-1186. https://doi.org/10.2969/jmsj/06341155
-
T. Li, Laguerre geometry of surfaces in
$R^{3}$ , Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1525-1534. https://doi.org/10.1007/s10114-005-0642-1 -
T. Li, H. Li, and C. Wang, Classification of hypersurfaces with parallel Laguerre second fundamental form in
$R^{n}$ , Differential Geom. Appl. 28 (2010), no. 2, 148-157. https://doi.org/10.1016/j.difgeo.2009.09.005 -
T. Li, H. Li, and C. Wang, Classification of hypersurfaces with constant Laguerre eigenvalues in
$R^n$ , Sci. China Math. 54 (2011), no. 6, 1129-1144. https://doi.org/10.1007/s11425-011-4170-4 -
T. Li and C. Wang, Laguerre geometry of hypersurfaces in
$\mathbb{R}^n$ , Manuscripta Math. 122 (2007), no. 1, 73-95. https://doi.org/10.1007/s00229-006-0058-y -
H. Liu, C. Wang, and G. Zhao, Mobius isotropic submanifolds in
$S^{n}$ , Tohoku Math. J. (2) 53 (2001), no. 4, 553-569. https://doi.org/10.2748/tmj/1113247800 -
C. Wang, Mobius geometry of submanifolds in
$S^{n}$ , Manuscripta Math. 96 (1998), no. 4, 517-534. https://doi.org/10.1007/s002290050080