DOI QR코드

DOI QR Code

ON THE TOPOLOGY OF THE NONABELIAN TENSOR PRODUCT OF PROFINITE GROUPS

  • Russo, Francesco G. (Department of Mathematics and Applied Mathematics University of Cape Town)
  • Received : 2015.04.28
  • Published : 2016.05.31

Abstract

The properties of the nonabelian tensor products are interesting in different contexts of algebraic topology and group theory. We prove two theorems, dealing with the nonabelian tensor products of projective limits of finite groups. The first describes their topology. Then we show a result of embedding in the second homology group of a pro-p-group, via the notion of complete exterior centralizer. We end with some open questions, originating from these two results.

Keywords

References

  1. R. Brown, P. Higgins, and R. Sivera, Nonabelian algebraic topology, Filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in Mathematics 15, Zurich, 2011.
  2. R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202. https://doi.org/10.1016/0021-8693(87)90248-1
  3. R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311-335. https://doi.org/10.1016/0040-9383(87)90004-8
  4. B. Eick, Schur multiplicators of infinite pro-p-groups with finite coclass, Israel J. Math. 166 (2008), 147-156. https://doi.org/10.1007/s11856-008-1024-z
  5. M. I. Graev, Free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 279-324.
  6. K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, de Gruyter, Berlin, 2006.
  7. N. Inassaridze, Nonabelian tensor products and nonabelian homology of groups, J. Pure Appl. Algebra 112 (1996), no. 2, 191-205. https://doi.org/10.1016/0022-4049(95)00133-6
  8. E. Katz and S. A. Morris, Free products of topological groups with amalgamation I, Pacific J. Math. 119 (1985), no. 1, 169-180. https://doi.org/10.2140/pjm.1985.119.169
  9. E. Katz and S. A. Morris, Free products of topological groups with amalgamation II, Pacific J. Math. 120 (1985), no. 1, 123-130. https://doi.org/10.2140/pjm.1985.120.123
  10. M. S. Khan and S. A. Morris, Free products of topological groups with central amalgamation I, Trans. Amer. Math. Soc. 273 (1982), no. 2, 405-416. https://doi.org/10.1090/S0002-9947-1982-0667153-5
  11. M. S. Khan and S. A. Morris, Free products of topological groups with central amalgamation II, Trans. Amer. Math. Soc. 273 (1982), no. 2, 417-432. https://doi.org/10.1090/S0002-9947-1982-0667154-7
  12. C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, Oxford University Press, Oxford, 2002.
  13. A. Lubotzky and D. Segal, Subgroups Growth, Progress in Mathematics (Boston, Mass.) 212, Birkhuser, Basel, 2003.
  14. P. Moravec, On the Schur multipliers of finite p-groups of given coclass, Israel J. Math. 185 (2011), 189-205. https://doi.org/10.1007/s11856-011-0106-5
  15. P. Niroomand and F. G. Russo, A note on the exterior centralizer, Arch. Math. (Basel) 93 (2009), no. 6, 505-512. https://doi.org/10.1007/s00013-009-0077-5
  16. P. Niroomand and F. G. Russo, On the size of the third homotopy group of the suspension of an EilenbergMacLane space, Turkish J. Math. 38 (2014), no. 4, 664-671. https://doi.org/10.3906/mat-1302-50
  17. D. E. Otera, F. G. Russo, and C. Tanasi, Some algebraic and topological properties of the nonabelian tensor product, Bull. Korean Math. Soc. 50 (2013), no. 4, 1069-1077. https://doi.org/10.4134/BKMS.2013.50.4.1069
  18. R. Rezaei and F. G. Russo, Exterior degree of infinite groups, preprint, 2013, ArXiv, available online at: http://arxiv.org/abs/1303.2324.
  19. J. Rotman, An Introduction to Algebraic Topology, Springer, Berlin, 1988.

Cited by

  1. Strong subgroup commutativity degree and some recent problems on the commuting probabilities of elements and subgroups vol.39, pp.8, 2016, https://doi.org/10.2989/16073606.2016.1247118
  2. The Influence of the Complete Nonexterior Square Graph on some Infinite Groups vol.56, pp.4, 2016, https://doi.org/10.1007/s10986-016-9331-2