DOI QR코드

DOI QR Code

합성형 멤리스터 에뮬레이터와 M-R 뮤테이터의 특성 비교

Comparative Analysis of Synthetic Memristor Emulator and M-R Mutator

  • 최현철 (전북대학교 전자정보공학부, 지능형 로봇 연구 센터) ;
  • 김형석 (전북대학교 전자정보공학부, 지능형 로봇 연구 센터)
  • Choi, Hyuncheol (Electronics and Information Department, Chonbuk National University, Intelligent Robots Research Center) ;
  • Kim, Hyongsuk (Electronics and Information Department, Chonbuk National University, Intelligent Robots Research Center)
  • 투고 : 2016.02.18
  • 심사 : 2016.05.08
  • 발행 : 2016.05.25

초록

합성형 멤리스터 에뮬레이터와 M-R 뮤테이터 기반 멤리스터 에뮬레이터의 특성들을 분석하고 차이점을 비교하였다. 멤리스터는 가변 저항 특성을 갖는 소자로서 저항, 커패시터, 인덕터 다음의 4번째 전기회로 기본소자이다. 멤리스터 에뮬레이터는 이 멤리스터의 가변저항 특성을 전자소자들을 조합하여 구현한 회로인데, 멤리스터 상용화 이전까지의 멤리스터 연구를 위해서는 필수 회로이다. 대표적인 멤리스터 에뮬레이터에는 그 구현 방법에 따라 전자소자들을 조합하여 가변 저항특성을 구현하는 합성형 멤리스터 에뮬레이터와 M-R 뮤테이터를 사용하여 비선형소자로부터 가변저항 특성을 구현하는 M-R 뮤테이터 기반 멤리스터 에뮬레이터가 있다. 본 논문에서는 이 두 가지 에뮬레이터의 구현 방법과 특성들을 분석하고 그 차이점을 연구하였다.

An analytical comparison of a synthetic memristor emulator and a M-R mutator-based memristor emulator has been performed. Memristor is an electrical element with the characteristic of variable resistance. It is called the fourth fundamental electrical element following resistor, capacitor, and inductor. Memristor emulator is a circuit which implements the feature of variable resistance via the composition of various electrical devices. It is an essential circuit to study memristor characteristics during the time before it is commercially available. There are two representative memristor emulators depending upon their implementation methods. One is a memristor emulator which is synthesized via combining various electrical devices and the other one is M-R mutator-based memristor emulator implemented by extracting resistance from a nonlinear device. In this paper, implementation methods of these two memristor emulators are studied and their differences are investigated by analysing their characteristics.

키워드

참고문헌

  1. L. O. Chua, "Memristor-the missing circuit element," IEEE Trans. Circuit Theory
  2. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, vol. 453, pp. 80.83, 2008.
  3. Ascoli, A., Corinto, F., Gilli, M, "Mathematical models and circuit implementations of memristive systems," 13th International Workshop on Cellular Nanoscale Networks and their Application(CNNA), pp. 1-6, Aug. 2012.
  4. Elgabra, H., Farhat, I.A.H., Hosani, A.S.Al,, Homouz, D., Mohammad, B., "Mathematical modeling of a memristor device," 2012 International Conference on Innovations in Information Technology(IIT), pp. 156-161, March. 2012.
  5. Zidan, M.A., Radwan, A.G., Salama, K.N., "On the mathematical modeling of memristors," 22nd International Conference on Microelectronics (ICM 2010), pp. 284-287, Dec. 2010.
  6. A. Rak and G. Cserey, "Macromodelling of the memristor in SPICE," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 4, pp. 632-636, Apr. 2010 https://doi.org/10.1109/TCAD.2010.2042900
  7. Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with nonlinear dopant drift," Radio Eng., vol. 18, no. 2, pp. 210-214, Jun. 2009.
  8. D. Batas and H. Fiedler, "A memristor SPICE implementation and a new approach for magnetic flux-controlled memristor modeling," IEEE Trans. Nanotechnol., vol. 10, no. 2, pp. 250-255, Mar. 2011. https://doi.org/10.1109/TNANO.2009.2038051
  9. S. Benderli and T. A.Wey, "On SPICE macromodelling of TiO2 memristors," Electron. Lett., vol. 45, no. 7, pp. 377-379, Mar. 2009. https://doi.org/10.1049/el.2009.3511
  10. Howard, D., Bull, L., de Lacy Costello, B., Adamatzky, A., Erokhin, V., "A SPICE model of the PEO-PANI memristor," International Journal of Bifurcation and Chaos., vol. 23, no. 6, pp. 10, Jun. 2013
  11. Abdalla, H., Pickett, M.D., "SPICE modeling of memristors," 2011 IEEE International Symposium on Circuits and Systems., pp. 1832-1835, May. 2011
  12. Valsa. J., Biolek. D., Biolek. Z., "An analogue model of the memristor," INT. J. of Num. Model. Electronic Networks Devices and Fields., vol. 24, no. 4, pp. 400-408, 2011 https://doi.org/10.1002/jnm.786
  13. R. Multu and E. Karakulak, "Emulator circuit of TiO2 memristor with linear dopant drift made using analog multiplier," in Proc. 2010 National Conf. Elect., Electron. Comput. Eng. (ELECO), pp. 380-384, 2010.
  14. Wang. X. Y., Andrew. L. F., Herbert. H. C. lu., Victor. S., Qi. Wei-Gui, "Implementation of an analogue model of a memristor based on a light-dependent resistor," Chinese Physics B, vol. 21, no. 10, 108501, 2012. https://doi.org/10.1088/1674-1056/21/10/108501
  15. Biolek, D., J. Bajer, V. Biolkova, Z. Kolka "Mutator for Transforming Nonlinear Resistor Into Memristor," 2011 20th European Conference on Circuit Theory and Design (ECCTD), 488-491.
  16. Kim, H., Sah, M. P., Yang, C., Cho, S. & Chua, L. O. [2012c] "Memristor emulator for memristor circuit applications," IEEE Trans. Circuit Syst.-I 59, 2422-2431. https://doi.org/10.1109/TCSI.2012.2188957
  17. H. Kim, M. P. Sah, C. Yang, T. Roska, and L. O. Chua, "Memristor bridge synapses," Proc. IEEE, vol. 100, no. 6, Jun. 2012.
  18. Ho, Y., Huang, G. M. & Li, P., "Dynamical properties and design analysis for nonvolatile memristor memories," IEEE Trans. Circuits Syst.-I 58, 724-736, 2011. https://doi.org/10.1109/TCSI.2010.2078710