DOI QR코드

DOI QR Code

천해에서 해저면 반사파의 모델링을 통한 물체의 탐지

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling

  • 온백산 (숭실대학교 정보통신공학과) ;
  • 김선호 (숭실대학교 정보통신공학과) ;
  • 문우식 (숭실대학교 정보통신공학과) ;
  • 임성빈 (숭실대학교 전자정보공학부) ;
  • 서익수 (국방과학연구소 소나체계개발단)
  • On, Baeksan (School of Electronic Engineering, Soongsil University) ;
  • Kim, Sunho (School of Electronic Engineering, Soongsil University) ;
  • Moon, Woosik (School of Electronic Engineering, Soongsil University) ;
  • Im, Sungbin (School of Electronic Engineering, Soongsil University) ;
  • Seo, Iksu (SONAR Systems PEO, Agency for Defense Development)
  • 투고 : 2016.04.02
  • 심사 : 2016.05.02
  • 발행 : 2016.05.25

초록

해저면에 착저된 물체를 탐지하는 문제는 다양한 분야에서 중요한 문제이다. 본 논문에서는 천해에서 평탄한 해저면에 물체가 놓여있는 경우 이것의 위치를 탐지하는 방법을 제안한다. 기존 방법으로는 사이드스캔소나를 사용하여 탐지영역내에서 영상을 얻고 영상신호처리 기술을 이용하여 원통을 인식하는 연구들이 수행되어 왔으나 이는 높은 주파수를 사용하기 때문에 탐지거리가 짧고 깨끗한 영상을 얻기 위한 탐지시간이 길다. 본 논문에서는 6~20KHz의 중주파수의 linear frequency modulated (LFM) signal을 사용하는 monostatic active sonar system을 사용하여 수심 100m 내외의 천해에서 연속적인 ping에 따른 received reflected signals 간의 모델링을 수행하여 이 모델링 error의 변화에 따라 착저된 물체의 유무를 결정짓게 된다. 이 방법은 해저면이 균일한 sediment로 구성되었다는 가정만을 기반하며, 추가적으로 sediment를 구성하는 종류에 대한 사전 정보가 필요없다는 장점이 있다. 탐지확률과 탐지거리 측면에서 제안된 방법의 가능성을 모의실험을 통하여 검증하였다.

Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.

키워드

참고문헌

  1. E.C. Jeong, T.B. Shim, J.E. Kim, "Underwater Acoustic Image Classification of a Cylindrical object using the Hough Transformation and Nth Degree Polynomial Interpolation", Journal of The Institute of Electronics Engineers of Korea Vol. 50, NO.2, pp. 193-200, 2013.
  2. J.E. Lee, T.B. Shim, "Research on Segmentation for Sidescan Sonar Image by Morphological Method", Journal of The Institute of Electronics Engineers of Korea vol. 49SP, NO.2, pp. 143-148, 2012.
  3. M. Zampolli, A. Espana, K. Williams, S. Kargl, "Low- to mid-frequency scattering from elastic objects on a sand sea floor: Simulation of frequency and aspect dependent structural echoes," J. Comp. Acous. 20, (2012) [14 pages]
  4. D. A. Abraham and A. P. Lyons (2002), "Novel physical interpretations of K-distributed reverberation," IEEE J. Oceanic Eng., vol. 27, pp. 800-813, Oct. 2002. https://doi.org/10.1109/JOE.2002.804324
  5. W.S. Moon, S.B Im, I.S. Seo, "Analysis of a Scattering Model from an Cylindrical Target in Contact with a Sediment", The Korea Institute of Military Science and Technology Symposium 2015.
  6. Z. Ye, "A novel approach to sound scattering by cylinders of finite length," J. Acoust. Soc. Am., vol. 102, no. 2, pp. 877-884, 1997. https://doi.org/10.1121/1.419910
  7. D. A. Abraham and A. P. Lyons (2004), "Simulation of Non-Rayleigh Reverberation and Clutter",IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 29, NO. 2.
  8. M. Stojanovic, "On the relationship between capacity and distance in an underwater acoustic communication channel," WUWNet 2006(ACM), Los Angeles, California, USA, Sept. 2006.
  9. L.Berkhovskikh and Y.Lysanov, Fundamentals of Ocean Acoustics "New York: Springer, 1982.
  10. W.J. Son, S.U. Son, J.W. Choi, S.H. Cho, S.K. Jung, "Measurements of Monostatic Bottom Backscattering Strengths in Shallow Water of the Yellow Sea", The Journal of the Acoustical Society of Korea Vol.34, NO.6, pp. 444-454, 2015. https://doi.org/10.7776/ASK.2015.34.6.444
  11. D. R. Jackson and M. D. Richardson, HighFrequency Seafloor Acoustics, (Springer, New York, 2006) pp. 171-175, 182-192, 237-238.
  12. WASHINGTON UNIV SEATTLE APPLIED PHYSICS LAB, "APL-UW High-Frequency Ocean Environmental Acoustic Models Handbook", OCT 1994.
  13. K. V. Mackenzie, "Bottom reverberation for 530- and 1030-cps sound in deep water," J. Acoust. Soc. Am. 33, 1498-1504, 1961. https://doi.org/10.1121/1.1908482

피인용 문헌

  1. Underwater Cylindrical Object Detection Using the Spectral Features of Active Sonar Signals with Logistic Regression Models vol.8, pp.1, 2018, https://doi.org/10.3390/app8010116