DOI QR코드

DOI QR Code

High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea

  • Jung, Bong-Kwang (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Song, Hyemi (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Kim, Min-Jae (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Cho, Jaeeun (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Shin, Eun-Hee (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine) ;
  • Chai, Jong-Yil (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine)
  • Received : 2016.02.27
  • Accepted : 2016.03.30
  • Published : 2016.04.30

Abstract

Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors.

Keywords

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC cancer base no. 11 [Internet]. International Agency for Research on Cancer 2012, Lyon, France, 2013. http://globocan.iarc.fr.
  2. Fisher JL, Scharwtzbaum JA, Wrensch M, Wiemels JL. Epidemiology of brain tumors. Neurol Clin 2007; 25: 867-890. https://doi.org/10.1016/j.ncl.2007.07.002
  3. Pagano JS, Blaser M, Buendia MA, Damania B, Khalili K, Raab-Traub N, Roizman B. Infectious agents and cancer: criteria for a causal relation. Semin Cancer Biol 2004; 14: 453-471. https://doi.org/10.1016/j.semcancer.2004.06.009
  4. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V; WHO International Agency for Research on Cancer Monograph Working Group. A review of human carcinogens. Part B: biological agents. Lancet Oncol 2009; 10: 321-322. https://doi.org/10.1016/S1470-2045(09)70096-8
  5. Alibek K, Kakpenova A, Baiken Y. Role of infectious agents in the carcinogenesis of brain and head and neck cancers. Infect Agent Cancer 2013; 8: 7. https://doi.org/10.1186/1750-9378-8-7
  6. Correia da Costa JM, Vale N, Gouveia MJ, Botelho MC, Sripa B, Santos LL, Santos JH, Rinaldi G, Brindley PJ. Schistosome and liver fluke derived catechol-estrogens and helminth associated cancers. Front Genet 2014; 5: 444.
  7. Del Brutto OH, Dolezal M, Castillo PR, Garcia HH. Neurocysticercosis and oncogenesis. Arch Med Res 2000; 31: 151-155. https://doi.org/10.1016/S0188-4409(00)00049-7
  8. Muehlenbachs A, Bhatnagar J, Agudelo CA, Hidron A, Eberhard ML, Mathison BA, Frace MA, Ito A, Metcalfe MG, Rollin DC, Visvesvara GS, Pham CD, Jones TL, Greer PW, Velez Hoyos A, Olson PD, Diazgranados LR, Zaki SR. Malignant transformation of Hymenolepis nana in a human host. N Engl J Med 2015; 373: 1845-1852. https://doi.org/10.1056/NEJMoa1505892
  9. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000; 30: 1217-1258. https://doi.org/10.1016/S0020-7519(00)00124-7
  10. Schuman LM, Choi NW, Gullen WH. Relationship of central nervous system neoplasms to Toxoplasma gondii infection. Am J Public Health Nations Health 1967; 57: 848-856. https://doi.org/10.2105/AJPH.57.5.848
  11. Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer 2013; 8: 8. https://doi.org/10.1186/1750-9378-8-8
  12. Vittecoq M, Elguero E, Lafferty KD, Roche B, Brodeur J, Gauthier-Clerc M, Misse D, Thomas F. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France. Infect Genet Evol 2012; 12: 496-498. https://doi.org/10.1016/j.meegid.2012.01.013
  13. Ryan P, Hurley SF, Johnson AM, Salzberg M, Lee MW, North JB, McNeil JJ, McMichael AJ. Tumours of the brain and presence of antibodies to Toxoplasma gondii. Int J Epidemiol 1993; 22: 412-419. https://doi.org/10.1093/ije/22.3.412
  14. Yazar S, Yaman O, Eser B, Altuntas F, Kurnaz F, Sahin I. Investigation of anti-Toxoplasma gondii antibodies in patients with neoplasia. J Med Microbiol 2004; 53: 1183-1186. https://doi.org/10.1099/jmm.0.45587-0
  15. Yuan Z, Gao S, Liu Q, Xia X, Liu X, Liu B, Hu R. Toxoplasma gondii antibodies in cancer patients. Cancer Lett 2007; 254: 71-74. https://doi.org/10.1016/j.canlet.2007.02.011
  16. Shin DW, Cha DY, Hua QJ, Cha GH, Lee YH. Seroprevalence of Toxoplasma gondii infection and characteristics of seropositive patients in general hospitals in Daejeon, Korea. Korean J Parasitol 2009; 47: 125-130. https://doi.org/10.3347/kjp.2009.47.2.125
  17. Thomas F, Lafferty KD, Brodeur J, Elguero E, Gauthier-Clerc M, Misse D. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common. Biol Lett 2012; 8: 101-103. https://doi.org/10.1098/rsbl.2011.0588
  18. Cong W, Liu GH, Meng QF, Dong W, Qin SY, Zhang FK, Zhang XY, Wang XY, Qian AD, Zhu XQ. Toxoplasma gondii infection in cancer patients: prevalence, risk factors, genotypes and association with clinical diagnosis. Cancer Lett 2015; 359: 307-313. https://doi.org/10.1016/j.canlet.2015.01.036
  19. Lim H, Lee SE, Jung BK, Kim MK, Lee MY, Nam HW, Shin JG, Yun CH, Cho HI, Shin EH, Chai JY. Serologic survey of toxoplasmosis in Seoul and Jeju-do, and a brief review of its seroprevalence in Korea. Korean J Parasitol 2012; 50: 287-293. https://doi.org/10.3347/kjp.2012.50.4.287
  20. Flegr J. Influence of latent toxoplasmosis on the phenotype of intermediate hosts. Folia Parasitol (Praha) 2010; 57: 81-87. https://doi.org/10.14411/fp.2010.010
  21. Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 1998; 11: 267-299.
  22. Molestina RE, El-Guendy N, Sinai AP. Infection with Toxoplasma gondii results in dysregulation of the host cell cycle. Cell Microbiol 2008; 10: 1153-1165. https://doi.org/10.1111/j.1462-5822.2008.01117.x
  23. Facer CA, Playfair JH. Malaria, Epstein-Barr virus, and the genesis of lymphomas. Adv Cancer Res 1989; 53: 33-72.

Cited by

  1. Puzzling and ambivalent roles of malarial infections in cancer development and progression vol.143, pp.14, 2016, https://doi.org/10.1017/s0031182016001591
  2. Seroprevalence and risk factors of Toxoplasma gondii infection in oral cancer patients in China: a case-control prospective study vol.146, pp.15, 2016, https://doi.org/10.1017/s0950268818001978
  3. Molecular Detection of Toxoplasma Gondii in Haemaphysalis Ticks in Korea vol.58, pp.3, 2016, https://doi.org/10.3347/kjp.2020.58.3.327
  4. Imiquimod Targets Toxoplasmosis Through Modulating Host Toll-Like Receptor-MyD88 Signaling vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.629917
  5. Infratentorial Stereotactic Biopsy of Brainstem and Cerebellar Lesions vol.11, pp.11, 2016, https://doi.org/10.3390/brainsci11111432
  6. Comprehensive Overview of Toxoplasma gondii-Induced and Associated Diseases vol.10, pp.11, 2016, https://doi.org/10.3390/pathogens10111351