DOI QR코드

DOI QR Code

Short-term changes of phytoplankton communities after nutrient addition and establishment of stable mass culture condition to prepare the type approval test of USCG Phase-II in mesocosm enclosure

메소코즘에서 USCG phase-II 형식승인 대비 영양염 첨가에 따른 식물플랑크톤 대량 배양조건 확립 및 군집구조의 단주기변화

  • Baek, Seung Ho (South Sea Institute, Korea Institute of Ocean Science & Technology) ;
  • Lee, Min Ji (South Sea Institute, Korea Institute of Ocean Science & Technology) ;
  • Shin, Kyoungsoon (South Sea Institute, Korea Institute of Ocean Science & Technology)
  • 백승호 (한국해양과학기술원 남해연구소) ;
  • 이민지 (한국해양과학기술원 남해연구소) ;
  • 신경순 (한국해양과학기술원 남해연구소)
  • Received : 2016.01.08
  • Accepted : 2016.04.07
  • Published : 2016.04.30

Abstract

In order to prepare for the type approval test for the United States Coast Guard (USCG) Phase-II of Ballast Water Treatment System (BWTS), a phytoplankton mass culture was conducted in a mesocosm enclosure. We evaluated the response of the phytoplankton community after nutrient addition (+N, +P, and +NP) and investigated the development of the species with increasing culture time. After nutrient dosing, the phytoplankton population significantly (p < 0.05) increased from day 1 to day 3, depending on the nutrient treatments In particular, the specific growth rate of the phytoplankton community in the case of +NP treatment and + N treatment were estimated to be $2.47d^{-1}$ and $1.98d^{-1}$, respectively. The phytoplankton population density in the case of + NP treatment was approximately 50 times higher than that of the control group, suggesting that these treatments could be useful for mass culturing phytoplankton (> 75% of natural community) for the approval regulation of USCG Phase-II. In the phytoplankton community of the mesocosm, Pseudo-nitzchia spp. dominated in the logarithmic growth phase. The cell density decreased significantly (p < 0.05) with increasing time, coinciding with the nutrient limitation. At that time, the dominance of Pseudo-nitzchia spp. shifted to that of Cylindrotheca closterium. Therefore, the optimum nutrient concentration ($N:30{\mu}M$, $P:3{\mu}M$) and reasonable harvesting time (after 3 days in summer) found in this study for the mass culturing of phytoplankton may be helpful to meet the USCG Phase-II biological criteria to be used in BWTS.

본 연구는 USCG Phase-II 형식승인에 대비하여 여름철 메소코즘에서 영양염 첨가(+N, +P, +NP)에 따른 식물플랑크톤의 대량 배양 가능성의 검토와 더불어, 영양염 조성의 차이에 따른 자연 식물플랑크톤 군집의 반응과 시간경과에 따른 종천이 양상을 파악하였다. 메소코즘에서 식물플랑크톤은 영양염 첨가후 곧바로 반응하여 1-3일 이내 최고 개체수 밀도에 도달하였다. +NP 실험군($N:30{\mu}M$, $P:3{\mu}M$)에서 식물플랑크톤 군집의 성장율은 $2.47d^{-1}$로 현저하게 높게 나타났고, +N실험군($N:30{\mu}M$)에서도 1.98 d-1로 나타났다. 반면, +P실험군($P:3{\mu}M$)에서는 대조군과 유사한 성장율을 보여, 영양염 첨가 효과가 명확하지 않았다. 특히, 식물플랑크톤 개체수 밀도 또한 +NP실험군에서 대조군 보다 약 50배 높게 나타나, 선박평형수의 형식승인 시험용 시료를 확보하는 대량 배양가능성을 시사할 수 있었다. 식물플랑크톤의 군집조성은 자연 상태에서 우점한 Pseudo-nitzchia spp. 종이 영양염첨가와 더불어 압도적으로 우점하였고, 실험시간의 경과와 함께 영양염 고갈로 인하여 총 식물플랑크톤이 급격하게 감소하였다. 결과적으로 USCG Phase-II 형식승인에 대비하여 시험수로 활용하기 위한 자연생물 대량배양의 최적 영양염(질산염: $30{\mu}M$과 인산염: $3{\mu}M$)과 수확시기(하계기준 실험3일 후)를 제시할 수 있었고, 이와 같은 과학적 근거는 선박평형수 처리장치를 개발하는 산업계에 크게 도움이 될 것이다.

Keywords

References

  1. A. R. Dzialowski, S. -H. Wang, N. -C. Lim, W. W. Spotts, D. G. Huggins, "Nutrient limitation of phytoplankton growth in central plain reservoirs, USA". J. Plankton Res., 27, 587-595, 2005. DOI: http://dx.doi.org/10.1093/plankt/fbi034
  2. D. Justic, N.N, Rabalais, R.E. Turner, Q. Dortch, "Changes in nutrient structure of river-dominated coastal waters: stoichimetric nutrient balance and its consequences". Estuar. Coast. Shelf Sci. 40, 339-356. 1995. DOI: http://dx.doi.org/10.1016/S0272-7714(05)80014-9
  3. N. Bax, A. Williamson, M. Aguero, E. Gonzalez, W. Geeves, "Marine invasive alien species: a threat to global biodiversity". Mar. Policy, 27, 313-323, 2003. DOI: http://dx.doi.org/10.1016/S0308-597X(03)00041-1
  4. IMO "Report on the ballast water treatment standards workshop". In 1st International ballast water treatment standards workshop, IMO London, 28-30 March. http://globallast.Imo.org/workshopreport.htm, 2001.
  5. A.W. Miller, M. Frazier, G.E. Smith, E.S. Perry, G.M. Ruiz, M.N. Tamburri, "Enumerating sparse organisms in ships' ballast water: Why counting to 10 is not so easy". Environ. Sci. Technol., 45, 3539-3546, 2011 DOI: http://dx.doi.org/10.1021/es102790d
  6. B. Hyun, S.H. Baek, W.J. Lee, K. Shin, "Viability test and harvest of natural marine phytoplankton communities to verify the efficacy of a ship's ballast water treatment system"
  7. M. Son, D. Kim, S.H. Baek, "Distributional characteristics of phytoplankton and nutrient limitation during spring season in Jinhae Bay". JKAIS, 15, 3345-3350, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.5.3345
  8. M. Son, S.H. Baek, "The distinct characteristics of phytoplankton growth response and their community structure following seven different nutrients addition in spring season of Jinhae Bay" J. Kor. Academia-Industrial coop. Sco., 16, 6567-6574, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.10.6567
  9. S.H. Baek, M. Son, S.W, Bae, K. Shin, D.H. Na, H. Cho, M. Yamaguchi, Y.O. Kim. S.W. Kim, " Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure". J. App. Phycol., 25, 1555-1565, 2013. DOI: http://dx.doi.org/10.1007/s10811-012-9953-7
  10. E. Magaletti, R. Urbani, P. Sist, C.F. Ferrari A.M. Cicero. "Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under Nand P-limitation". Eur. J. Phycol., 39, 133-142, 2004. DOI: http://dx.doi.org/10.1080/0967026042000202118
  11. S.H. Baek, M. Son, W,J Shim, "Effects of chemically enhanced water-accommodated fraction of Iranian heavy crude oil on periphytic microbial communities in microcosm experiment". Bull. Environ. Contam. Toxicol., 90, 605-610, 2013. DOI: http://dx.doi.org/10.1007/s00128-013-0963-1
  12. S.H. Baek, M. Son, D.S. Kim, H.W. Chio, Y.O. Kim. "Assessing the Ecosystem Health Status of Korea Gwangyang and Jinhae Bays based on a Planktonic Index of Biotic Integrity (P-IBI)" Ocean Sci. J., 49, 291-311, 2014. DOI: http://dx.doi.org/10.1007/s12601-014-0029-2
  13. G.M. Zheng, D.L. Tang. "Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Mar. Ecol. Prog. Ser. 333, 61-74. 2007. DOI: http://dx.doi.org/10.3354/meps333061