DOI QR코드

DOI QR Code

Resveratrol Exerts Dosage-Dependent Effects on the Self-Renewal and Neural Differentiation of hUC-MSCs

  • Wang, Xinxin (The First Affiliated Hospital of Zhengzhou University) ;
  • Ma, Shanshan (School of Life Sciences, Zhengzhou University) ;
  • Meng, Nan (The First Affiliated Hospital of Zhengzhou University) ;
  • Yao, Ning (School of Life Sciences, Zhengzhou University) ;
  • Zhang, Kun (School of Life Sciences, Zhengzhou University) ;
  • Li, Qinghua (School of Life Sciences, Zhengzhou University) ;
  • Zhang, Yanting (School of Life Sciences, Zhengzhou University) ;
  • Xing, Qu (School of Life Sciences, Zhengzhou University) ;
  • Han, Kang (School of Life Sciences, Zhengzhou University) ;
  • Song, Jishi (School of Life Sciences, Zhengzhou University) ;
  • Yang, Bo (The First Affiliated Hospital of Zhengzhou University) ;
  • Guan, Fangxia (The First Affiliated Hospital of Zhengzhou University)
  • 투고 : 2015.12.16
  • 심사 : 2016.04.06
  • 발행 : 2016.05.31

초록

Resveratrol (RES) plays a critical role in the fate of cells and longevity of animals via activation of the sirtuins1 (SIRT1) gene. In the present study, we intend to investigate whether RES could promote the self-renewal and neural-lineage differentiation in human umbilical cord derived MSCs (hUC-MSCs) in vitro at concentrations ranging from 0.1 to $10{\mu}M$, and whether it exerts the effects by modulating the SIRT1 signaling. Herein, we demonstrated that RES at the concentrations of 0.1, 1 and $2.5{\mu}M$ could promote cell viability and proliferation, mitigate senescence and induce expression of SIRT1 and Proliferating Cell Nuclear Antigen (PCNA) while inhibit the expression of p53 and p16. However, the effects were reversed by 5 and $10{\mu}M$ of RES. Furthermore, RES could promote neural differentiation in a dose-dependent manner as evidenced by morphological changes and expression of neural markers (Nestin, ${\beta}III-tubulin$ and NSE), as well as pro-neural transcription factors Neurogenin (Ngn)1, Ngn2 and Mash1. Taken together, RES exerts a dosage-dependent effect on the self-renewal and neural differentiation of hUC-MSCs via SIRT1 signaling. The current study provides a new strategy to regulate the fate of hUC-MSCs and suggests a more favorable in vitro cell culture conditions for hUCMSCs-based therapies for some intractable neurological disorders.

키워드

참고문헌

  1. Atkins, K.M., Thomas, L.L., Barroso-Gonzalez, J., Thomas, L., Auclair, S., Yin, J., Kang, H., Chung, J.H., Dikeakos, J.D., and Thomas, G. (2014). The multifunctional sorting protein PACS-2 regulates SIRT1-mediated deacetylation of p53 to modulate p21-dependent cell-cycle arrest. Cell Rep. 8, 1545-1557. https://doi.org/10.1016/j.celrep.2014.07.049
  2. Can, A., and Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25, 2886-2895. https://doi.org/10.1634/stemcells.2007-0417
  3. Cardozo, A.J., Gomez, D.E., and Argibay, P.F. (2012). Neurogenic differentiation of human adipose-derived stem cells: relevance of different signaling molecules, transcription factors, and key marker genes. Gene 511, 427-436. https://doi.org/10.1016/j.gene.2012.09.038
  4. Chen, H., Liu, X., Chen, H., Cao, J., Zhang, L., Hu, X., and Wang, J. (2014a). Role of SIRT1 and AMPK in mesenchymal stem cells differentiation. Ageing Res. Rev. 13, 55-64. https://doi.org/10.1016/j.arr.2013.12.002
  5. Chen, H., Liu, X., Zhu, W., Chen, H., Hu, X., Jiang, Z., Xu, Y., Wang, L., Zhou, Y., Chen, P., et al. (2014b). SIRT1 ameliorates agerelated senescence of mesenchymal stem cells via modulating telomere shelterin. Front Aging Neurosci. 6, 103.
  6. Chen, B., Zang, W., Wang, J., Huang, Y., He, Y., Yan, L., Liu, J., and Zheng, W. (2015). The chemical biology of sirtuins. Chem. Soc. Rev. 44, 5246-5264. https://doi.org/10.1039/C4CS00373J
  7. da Luz, P.L., Tanaka, L., Brum, P.C., Dourado, P.M., Favarato, D., Krieger, J.E., and Laurindo, F.R. (2012). Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats. Atherosclerosis 224, 136-142. https://doi.org/10.1016/j.atherosclerosis.2012.06.007
  8. Dai, Z., Li, Y., Quarles, L.D., Song, T., Pan, W., Zhou, H., and Xiao, Z. (2007). Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14, 806-814. https://doi.org/10.1016/j.phymed.2007.04.003
  9. Godoy, J.A., Zolezzi, J.M., Braidy, N., and Inestrosa, N.C. (2014). Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain. Mol. Neurobiol. 50, 744-756. https://doi.org/10.1007/s12035-014-8645-5
  10. Guo, R., Li, W., Liu, B., Li, S., Zhang, B., and Xu, Y. (2014). Resveratrol protects vascular smooth muscle cells against high glucose-induced oxidative stress and cell proliferation in vitro. Med. Sci. Monit Basic Res. 20, 82-92. https://doi.org/10.12659/MSMBR.890858
  11. Heng, B.C., Saxena, P., and Fussenegger, M. (2014). Heterogeneity of baseline neural marker expression by undifferentiated mesenchymal stem cells may be correlated to donor age. J. Biotechnol. 174, 29-33. https://doi.org/10.1016/j.jbiotec.2014.01.021
  12. Hisahara, S., Chiba, S., Matsumoto, H., Tanno, M., Yagi, H., Shimohama, S., Sato, M., and Horio, Y. (2008). Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation. Proc. Natl. Acad. Sci. USA 105, 15599-15604. https://doi.org/10.1073/pnas.0800612105
  13. Hubbard, B.P., and Sinclair, D.A. (2014). Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146-154. https://doi.org/10.1016/j.tips.2013.12.004
  14. Ido, Y., Duranton, A., Lan, F., Weikel, K.A., Breton, L., and Ruderman, N.B. (2015). Resveratrol prevents oxidative stressinduced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PLoS One 10, e0115341. https://doi.org/10.1371/journal.pone.0115341
  15. Jackson, S.J., Singletary, K.W., Murphy, L.L., Venema, R.C., and Young, A.J. (2016). Phytonutrients differentially stimulate NAD(P)H:quinone oxidoreductase, inhibit proliferation, and trigger mitotic catastrophe in Hepa1c1c7 cells. J. Med. Food 19, 47-53. https://doi.org/10.1089/jmf.2015.0079
  16. Joe, I.S., Jeong, S.G., and Cho, G.W. (2015). Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells. Neurosci. Lett. 584, 97-102. https://doi.org/10.1016/j.neulet.2014.10.024
  17. Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., Akay, G.G., Demiralp, D.O., Tukun, A., Uckan, D., and Can, A. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25, 319-331. https://doi.org/10.1634/stemcells.2006-0286
  18. Kumazaki, M., Noguchi, S., Yasui, Y., Iwasaki, J., Shinohara, H., Yamada, N., and Akao, Y. (2013). Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells. J. Nutr. Biochem. 24, 1849-1858. https://doi.org/10.1016/j.jnutbio.2013.04.006
  19. Lee, J.K., Jin, H.K., Endo, S., Schuchman, E.H., Carter, J.E., and Bae, J.S. (2010). Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses. Stem Cells 28, 329-343.
  20. Liu, B., Ghosh, S., Yang, X., Zheng, H., Liu, X., Wang, Z., Jin, G., Zheng, B., Kennedy, B.K., Suh, Y., et al. (2012). Resveratrol rescues SIRT1-dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 16, 738-750. https://doi.org/10.1016/j.cmet.2012.11.007
  21. Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148. https://doi.org/10.1016/S0092-8674(01)00524-4
  22. Ma, S., Liang, S., Jiao, H., Chi, L., Shi, X., Tian, Y., Yang, B., and Guan, F. (2014). Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of dickkopf-1 (DKK1). Mol. Cell Biochem. 385, 277-286. https://doi.org/10.1007/s11010-013-1836-y
  23. Marambaud, P., Zhao, H., and Davies, P. (2005). Resveratrol promotes clearance of Alzheimer's disease amyloid-beta peptides. J. Biol. Chem. 280, 37377-37382. https://doi.org/10.1074/jbc.M508246200
  24. Mikula-Pietrasik, J., Kuczmarska, A., Rubis, B., Filas, V., Murias, M., Zielinski, P., Piwocka, K., and Ksiazek, K. (2012). Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms. Free Radic. Biol. Med. 52, 2234-2245. https://doi.org/10.1016/j.freeradbiomed.2012.03.014
  25. Ozcan, P., Ficicioglu, C., Yildirim, O.K., Ozkan, F., Akkaya, H., and Aslan, I. (2015). Protective effect of resveratrol against oxidative damage to ovarian reserve in female Sprague-Dawley rats. Reprod. Biomed. Online 31, 404-410. https://doi.org/10.1016/j.rbmo.2015.06.007
  26. Park, H.R., Kong, K.H., Yu, B.P., Mattson, M.P., and Lee, J. (2012). Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J. Biol. Chem. 287, 42588-42600. https://doi.org/10.1074/jbc.M112.406413
  27. Pinarli, F.A., Turan, N.N., Pinarli, F.G., Okur, A., Sonmez, D., Ulus, T., Oguz, A., Karadeniz, C., and Delibasi, T. (2013). Resveratrol and adipose-derived mesenchymal stem cells are effective in the prevention and treatment of doxorubicin cardiotoxicity in rats. Pediatr. Hematol. Oncol. 30, 226-238. https://doi.org/10.3109/08880018.2012.762962
  28. Rathbone, C.R., Booth, F.W., and Lees, S.J. (2009). Sirt1 increases skeletal muscle precursor cell proliferation. Eur. J. Cell Biol. 88, 35-44. https://doi.org/10.1016/j.ejcb.2008.08.003
  29. Rehan, L., Laszki-Szczachor, K., Sobieszczanska, M., and Polak-Jonkisz, D. (2014). SIRT1 and NAD as regulators of ageing. Life Sci. 105, 1-6. https://doi.org/10.1016/j.lfs.2014.03.015
  30. Rimmele, P., Lofek-Czubek, S., and Ghaffari, S. (2014). Resveratrol increases the bone marrow hematopoietic stem and progenitor cell capacity. Am. J. Hematol. 89, E235-238. https://doi.org/10.1002/ajh.23837
  31. Saharan, S., Jhaveri, D.J., and Bartlett, P.F. (2013). SIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus. J. Neurosci. Res. 91, 642-659. https://doi.org/10.1002/jnr.23199
  32. Simic, P., Zainabadi, K., Bell, E., Sykes, D.B., Saez, B., Lotinun, S., Baron, R., Scadden, D., Schipani, E., and Guarente, L. (2013). SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating beta-catenin. EMBO Mol. Med. 5, 430-440. https://doi.org/10.1002/emmm.201201606
  33. Song, L.H., Pan, W., Yu, Y.H., Quarles, L.D., Zhou, H.H., and Xiao, Z.S. (2006). Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol. In Vitro 20, 915-922. https://doi.org/10.1016/j.tiv.2006.01.016
  34. Tsai, J.H., Hsu, L.S., Lin, C.L., Hong, H.M., Pan, M.H., Way, T.D., and Chen, W.J. (2013). 3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/betacatenin signaling cascades and reversal of epithelialmesenchymal transition. Toxicol. Appl. Pharmacol. 272, 746-756. https://doi.org/10.1016/j.taap.2013.07.019
  35. Vassallo, P.F., Simoncini, S., Ligi, I., Chateau, A.L., Bachelier, R., Robert, S., Morere, J., Fernandez, S., Guillet, B., Marcelli, M., et al. (2014). Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression. Blood 123, 2116-2126. https://doi.org/10.1182/blood-2013-02-484956
  36. Yu, Q., Liu, L., Duan, Y., Wang, Y., Xuan, X., Zhou, L., and Liu, W. (2013). Wnt/beta-catenin signaling regulates neuronal differentiation of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 439, 297-302. https://doi.org/10.1016/j.bbrc.2013.08.030
  37. Yuan, H.F., Zhai, C., Yan, X.L., Zhao, D.D., Wang, J.X., Zeng, Q., Chen, L., Nan, X., He, L.J., Li, S.T., et al. (2012). SIRT1 is required for long-term growth of human mesenchymal stem cells. J. Mol. Med. (Berl). 90, 389-400. https://doi.org/10.1007/s00109-011-0825-4
  38. Zhang, D.Y., Wang, H.J., and Tan, Y.Z. (2011). Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One 6, e21397. https://doi.org/10.1371/journal.pone.0021397
  39. Zhang, T., Tian, F., Wang, J., Zhou, S., Dong, X., Guo, K., Jing, J., Zhou, Y., and Chen, Y. (2015). Donepezil attenuates high glucose-accelerated senescence in human umbilical vein endothelial cells through SIRT1 activation. Cell Stress Chaperones 20, 787-792. https://doi.org/10.1007/s12192-015-0601-4
  40. Zhu, Y., He, W., Gao, X., Li, B., Mei, C., Xu, R., and Chen, H. (2015). Resveratrol overcomes gefitinib resistance by increasing the intracellular gefitinib concentration and triggering apoptosis, autophagy and senescence in PC9/G NSCLC cells. Sci Rep. 5, 17730. https://doi.org/10.1038/srep17730
  41. Zhu, X., Zhang, Y., Li, Q., Yang, L., Zhang, N., Ma, S., Zhang, K., Song, J. and Guan, F. (2016). ${\beta}$-carotene induces apoptosis in human esophageal squamous cell carcinoma cell lines via the Cav-1/AKT/NF-kappaB signaling pathway. J. Biochem. Mol. Toxicol. 30, 148-157. https://doi.org/10.1002/jbt.21773

피인용 문헌

  1. Resveratrol enhances the radiosensitivity of nasopharyngeal carcinoma cells by downregulating E2F1 vol.37, pp.3, 2017, https://doi.org/10.3892/or.2017.5413
  2. HDAC1 Silence Promotes Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Mouse Model of Traumatic Brain Injury via PI3K/AKT Pathway vol.12, pp.1662-5102, 2018, https://doi.org/10.3389/fncel.2018.00498
  3. Combined treatment with systemic resveratrol and resveratrol preconditioned mesenchymal stem cells, maximizes antifibrotic action in diabetic cardiomyopathy vol.234, pp.7, 2016, https://doi.org/10.1002/jcp.27947
  4. Resveratrol promotes secretion of wound healing related growth factors of mesenchymal stem cells originated from adult and fetal tissues vol.48, pp.1, 2016, https://doi.org/10.1080/21691401.2020.1817057
  5. Resveratrol Preincubation Enhances the Therapeutic Efficacy of hUC-MSCs by Improving Cell Migration and Modulating Neuroinflammation Mediated by MAPK Signaling in a Mouse Model of Alzheimer’s Di vol.14, pp.None, 2016, https://doi.org/10.3389/fncel.2020.00062
  6. Looking for immortality: Review of phytotherapy for stem cell senescence vol.23, pp.2, 2016, https://doi.org/10.22038/ijbms.2019.40223.9522
  7. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration vol.12, pp.3, 2016, https://doi.org/10.1088/1758-5090/ab906e
  8. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation vol.43, pp.3, 2016, https://doi.org/10.1007/s11357-020-00295-w
  9. Comparison of the Effects of Resveratrol and Its Derivatives on the Radiation Response of MCF-7 Breast Cancer Cells vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179511
  10. Hormesis and neural stem cells vol.178, pp.None, 2022, https://doi.org/10.1016/j.freeradbiomed.2021.12.003