DOI QR코드

DOI QR Code

A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift

  • Kim, Hyeun Bum (Department of Infectious Disease and Global Health, Tufts University) ;
  • Wang, Yuankai (Department of Infectious Disease and Global Health, Tufts University) ;
  • Sun, Xingmin (Department of Molecular Medicine, Morsani College of Medicine, University of South Florida)
  • Received : 2015.12.08
  • Accepted : 2016.01.17
  • Published : 2016.03.28

Abstract

We investigated the increased risk of Clostridium difficile infection (CDI) caused by the combined use of antibiotics and an immunosuppressive drug in a mouse model. Our data showed that an approximate return to pretreatment conditions of gut microbiota occurred within days after cessation of the antibiotic treatment, whereas the recovery of gut microbiota was delayed with the combined treatment of antibiotics and dexamethasone, leading to an increased severity of CDI. An alteration of gut microbiota is a key player in CDI. Therefore, our data implied that immunosuppressive drugs can increase the risk of CDI through the delayed recovery of altered gut microbiota.

Keywords

References

  1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307: 1915-1920. https://doi.org/10.1126/science.1104816
  2. Berg RD. 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4: 430-435. https://doi.org/10.1016/0966-842X(96)10057-3
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  4. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, et al. 2008. A mouse model of Clostridium difficile-associated disease. Gastroenterology 135: 1984-1992. https://doi.org/10.1053/j.gastro.2008.09.002
  5. Das R, Feuerstadt P, Brandt LJ. 2010. Glucocorticoids are associated with increased risk of short-term mortality in hospitalized patients with Clostridium difficile-associated disease. Am. J. Gastroenterol. 105: 2040-2049. https://doi.org/10.1038/ajg.2010.142
  6. De Cruz P, Kang S, Wagner J, Buckley M, Sim WH, Prideaux L, et al. 2015. Association between specific mucosa-associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: a pilot study. J. Gastroenterol. Hepatol. 30: 268-278. https://doi.org/10.1111/jgh.12694
  7. De La Cochetiere MF, Durand T, Lepage P, Bourreille A, Galmiche JP, Dore J. 2005. Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J. Clin. Microbiol. 43: 5588-5592. https://doi.org/10.1128/JCM.43.11.5588-5592.2005
  8. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  9. Kachrimanidou M, Malisiovas N. 2011. Clostridium difficile infection: a comprehensive review. Crit. Rev. Microbiol. 37: 178-187. https://doi.org/10.3109/1040841X.2011.556598
  10. Kelly CP. 2012. Current strategies for management of initial Clostridium difficile infection. J. Hosp. Med. 7: S5-S10. https://doi.org/10.1002/jhm.1909
  11. Killgore G, Thompson A, Johnson S, Brazier J, Kuijper E, Pepin J, et al. 2008 Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J. Clin. Microbiol. 46: 431-437. https://doi.org/10.1128/JCM.01484-07
  12. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, et al. 2012. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA 109: 15485-15490. https://doi.org/10.1073/pnas.1205147109
  13. Kim HB, Isaacson RE. 2015. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 177: 242-251. https://doi.org/10.1016/j.vetmic.2015.03.014
  14. Kim HB, Zhang Q, Sun X, Beamer G, Wang Y, Tzipori S. 2014. Beneficial effect of oral tigecycline treatment on Clostridium difficile infection in gnotobiotic piglets. Antimicrob. Agents Chemother. 58: 7560-7564. https://doi.org/10.1128/AAC.03447-14
  15. Lode H, Von der Hoh N, Ziege S, Borner K, Nord CE. 2001. Ecological effects of linezolid versus amoxicillin/clavulanic acid on the normal intestinal microflora. Scand. J. Infect. Dis. 33: 899-903. https://doi.org/10.1080/00365540110076714
  16. Owens RC Jr, Donskey CJ, Gaynes RP, Loo VG, Muto CA. 2008. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 46: S19-S31. https://doi.org/10.1086/521859
  17. Perez J, Springthorpe VS, Sattar SA. 2011. Clospore: a liquid medium for producing high titers of semi-purified spores of Clostridium difficile. J. AOAC Int. 94: 618-626.
  18. Renggaman A, Choi HL, Sudiarto SI, Alasaarela L, Nam OS. 2015. Development of pig welfare assessment protocol integrating animal-, environment-, and management-based measures. J. Anim. Sci. Technol. 57: 1. https://doi.org/10.1186/s40781-014-0034-0
  19. Riboulet-Bisson E, Sturme MH, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, et al. 2012. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7: e31113. https://doi.org/10.1371/journal.pone.0031113
  20. Schloss PD, Larget BR, Handelsman J. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol. 70: 5485-5492. https://doi.org/10.1128/AEM.70.9.5485-5492.2004
  21. Sorg JA, Sonenshein AL. 2010. Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J. Bacteriol. 192: 4983-4990. https://doi.org/10.1128/JB.00610-10
  22. Steele J, Feng H, Parry N, Tzipori S. 2010. Piglet models of acute or chronic Clostridium difficile illness. J. Infect. Dis. 201: 428-434. https://doi.org/10.1086/649799
  23. Stuck AE, Minder CE, Frey FJ. 1989. Risk of infectious complications in patients taking glucocorticosteroids. Rev. Infect. Dis. 11: 954-963. https://doi.org/10.1093/clinids/11.6.954
  24. Sun X, Wang H, Zhang Y, Chen K, Davis B, Feng H. 2011. Mouse relapse model of Clostridium difficile infection. Infect. Immun. 79: 2856-2864. https://doi.org/10.1128/IAI.01336-10
  25. Wang YK, Yan YX, Kim HB, Ju X, Zhao S, Zhang K, et al. 2015. A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Hum. Vaccin. Immunother. 11: 2215-2222. https://doi.org/10.1080/21645515.2015.1052352
  26. Zhang Q, Widmer G, Tzipori S. 2013. Apig model of the human gastrointestinal tract. Gut Microbes 4: 193-200. https://doi.org/10.4161/gmic.23867

Cited by

  1. Changes in Composition of the Gut Bacterial Microbiome after Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection in a Pediatric Heart Transplant Patient vol.4, pp.None, 2016, https://doi.org/10.3389/fcvm.2017.00017
  2. Blueberry Phenolics Reduce Gastrointestinal Infection of Patients with Cerebral Venous Thrombosis by Improving Depressant-Induced Autoimmune Disorder via miR-155-Mediated Brain-Derived Neurotrophic Fa vol.8, pp.None, 2016, https://doi.org/10.3389/fphar.2017.00853
  3. Molecular, microbiological and clinical characterization of Clostridium difficile isolates from tertiary care hospitals in Colombia vol.12, pp.9, 2016, https://doi.org/10.1371/journal.pone.0184689
  4. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection vol.8, pp.None, 2016, https://doi.org/10.3389/fcimb.2018.00029
  5. Factors Associated with the Use of Fecal Microbiota Transplant in Patients with Recurrent Clostridium difficile Infections vol.39, pp.3, 2018, https://doi.org/10.1017/ice.2017.314