DOI QR코드

DOI QR Code

Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia

  • Received : 2015.12.08
  • Accepted : 2015.12.15
  • Published : 2016.03.28

Abstract

The triglyceride-lowering effect of probiotics Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601 were investigated. Male SD Wistar rats were randomly divided into three groups and fed high-fat diet (HFD), HFD and probiotics (5 × 109 CFU/day of L. plantarum KY1032 and 5 × 109 CFU/day of L. curvatus HY7601), or normal diet for 6 weeks. Probiotic treatment significantly lowered the elevated plasma triglyceride and increased plasma free fatty acid, glycerol, and plasma apolipoprotein A-V (ApoA-V) levels. The probiotic-treated group showed elevated hepatic mRNA expression of PPARα, bile acid receptor (FXR), and ApoA-V. These results demonstrate that L. plantarum KY1032 and L. curvatus HY7601 lower triglycerides in hypertriglyceridemic rats by upregulating ApoA-V, PPARα, and FXR.

Keywords

References

  1. Ahn HY, Kim M, Chae JS, Ahn YT, Sim JH, Choi ID, et al. 2015. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia. Atherosclerosis 241: 649-656. https://doi.org/10.1016/j.atherosclerosis.2015.06.030
  2. An HY, Park SY, Lee DK, Kim JR, Cha MK, Lee SW, et al. 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 10: 116. https://doi.org/10.1186/1476-511X-10-116
  3. Andrade S, Borges N. 2009. Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. J. Dairy Res. 76: 469-474. https://doi.org/10.1017/S0022029909990173
  4. Ataie-Jafari A, Larijani B, Alavi Majd H, Tahbaz F. 2009. Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann. Nutr. Metab. 54: 22-27. https://doi.org/10.1159/000203284
  5. Caussy C, Charrière S, Marçais C, Di Filippo M, Sassolas A, Delay M, et al. 2014. An APOA5 3' UTR variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site. Am. J. Hum. Genet. 94: 129-134. https://doi.org/10.1016/j.ajhg.2013.12.001
  6. Charlton-Menys V, Durrington PN. 2005. Apolipoprotein A5 and hypertriglyceridemia. Clin. Chem. 51: 295-297. https://doi.org/10.1373/clinchem.2004.044826
  7. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502.
  8. Fruchart-Najib J, Baugé E, Niculescu LS, Pham T, Thomas B, Rommens C, et al. 2004. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem. Biophys. Res. Commun. 319: 397-404. https://doi.org/10.1016/j.bbrc.2004.05.003
  9. Fuentes MC, Lajo T, Carrión JM, Cuñé J. 2013. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br. J. Nutr. 109: 1866-1872. https://doi.org/10.1017/S000711451200373X
  10. Guardiola M, Cofán M, de Castro-Oros I, Cenarro A, Plana N, Talmud PJ, et al. 2015. APOA5 variants predispose hyperlipidemic patients to atherogenic dyslipidemia and subclinical atherosclerosis. Atherosclerosis 240: 98-104 https://doi.org/10.1016/j.atherosclerosis.2015.03.008
  11. Hegele RA. 2009. Plasma lipoproteins: genetic influences and clinical implications. Nat. Rev. Genet. 10: 109-121. https://doi.org/10.1038/nrg2481
  12. Miremadia F, Ayyashb M, Sherkatc F, Stojanovskaa L. 2014. Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic lactobacilli and bifidobacteria. J. Funct. Foods 9: 295-305. https://doi.org/10.1016/j.jff.2014.05.002
  13. Moroti C, Souza Magri LF, de Rezende Costa M, Cavallini DC, Sivieri K. 2012. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis. 11: 29. https://doi.org/10.1186/1476-511X-11-29
  14. Park DY, Ahn YT, Huh CS, McGregor RA, Choi MS. 2013. Dual probiotic strains suppress high fructose-induced metabolic syndrome. World J. Gastroenterol. 19: 274-283. https://doi.org/10.3748/wjg.v19.i2.274
  15. Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, et al. 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8: e59470. https://doi.org/10.1371/journal.pone.0059470
  16. Pejic RN, Lee DT. 2006. Hypertriglyceridemia. J. Am. Board Fam. Med. 19: 310-316. https://doi.org/10.3122/jabfm.19.3.310
  17. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, et al. 2001. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294: 169-173. https://doi.org/10.1126/science.1064852
  18. Prieur X, Coste H, Rodriguez JC. 2003. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-alpha and contains a novel farnesoid X-activated receptor response element. J. Biol. Chem. 278: 25468-25480. https://doi.org/10.1074/jbc.M301302200
  19. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J. 2000. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Environ. Microbiol. 66: 2263-2266. https://doi.org/10.1128/AEM.66.5.2263-2266.2000
  20. Sharma V, Forte TM, Ryan RO. 2013. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol. Curr. Opin. Lipidol. 24: 153-159. https://doi.org/10.1097/MOL.0b013e32835c8c1a
  21. Sharma V, Ryan RO, Forte TM. 2012. Apolipoprotein A-V dependent modulation of plasma triacylglycerol: a puzzlement. Biochim. Biophys. Acta 1821: 795-799. https://doi.org/10.1016/j.bbalip.2011.12.002
  22. van den Berg SA, Heemskerk MM, Geerling JJ, van Klinken JB, Schaap FG, Bijland S, et al. 2013. Apolipoprotein A5 deficiency aggravates high-fat diet-induced obesity due to impaired central regulation of food intake. FASEB J. 27: 3354-3362. https://doi.org/10.1096/fj.12-225367
  23. van der Vliet HN, Schaap FG, Levels JH, Ottenhoff R, Looije N, Wesseling JG, et al. 2002. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem. Biophys. Res. Commun. 295: 1156-1159. https://doi.org/10.1016/S0006-291X(02)00808-2
  24. Vu-Dac N, Gervois P, Jakel H, Nowak M, Bauge E, Dehondt H, et al. 2003. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J. Biol. Chem. 278: 17982-17985. https://doi.org/10.1074/jbc.M212191200
  25. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP. 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 2578-2885. https://doi.org/10.1128/AEM.67.6.2578-2585.2001
  26. Yoo SR, Kim YJ, Park DY, Jung UJ, Jeon SM, Ahn YT, et al. 2013. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 21: 2571-2578. https://doi.org/10.1002/oby.20428

Cited by

  1. INTERRELATIONSHIP OF THE PRO-INFLAMMATORY MARKER HSCRP WITH DYSLIPIDEMIC CHANGES: A COMPARATIVE STUDY BETWEEN SUBCLINICAL AND OVERT HYPOTHYROIDISM vol.5, pp.16, 2016, https://doi.org/10.14260/jemds/2016/186
  2. Probiotic Characteristics of Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca vol.9, pp.4, 2016, https://doi.org/10.1007/s12602-017-9301-y
  3. Dietary lipid content reorganizes gut microbiota and probiotic L . rhamnosus attenuates obesity and enhances catabolic hormonal milieu in zebrafish vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-05147-w
  4. Gut Microbiome Associates With Lipid-Lowering Effect of Rosuvastatin in Vivo vol.9, pp.None, 2016, https://doi.org/10.3389/fmicb.2018.00530
  5. Effects of Lactobacillus Plantarum and Lactobacillus Helveticus on Renal Insulin Signaling, Inflammatory Markers, and Glucose Transporters in High-Fructose-Fed Rats vol.55, pp.5, 2016, https://doi.org/10.3390/medicina55050207
  6. Inhibitory Effects of Lactobacillus plantarum Q180 on Lipid Accumulation in HepG2 Cells vol.32, pp.6, 2016, https://doi.org/10.9799/ksfan.2019.32.6.738
  7. Protective Effect of Fermented Camel Milk Containing Bifidobacterium longum BB536 on Blood Lipid Profile in Hypercholesterolemic Rats vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/1557945
  8. Two putative probiotic strains improve diet‐induced hypercholesterolemia through modulating intestinal cholesterol uptake and hepatic cholesterol efflux vol.132, pp.1, 2016, https://doi.org/10.1111/jam.15181