DOI QR코드

DOI QR Code

Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

  • Yu Mi Baek (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Soojin Yoon (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Yeo Eun Hwang (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Dong-Eun Kim (Department of Bioscience and Biotechnology, Konkuk University)
  • 투고 : 2016.04.08
  • 심사 : 2016.07.02
  • 발행 : 2016.08.31

초록

Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I.

키워드

과제정보

This work was supported by a grant from Ministry of Health and Welfare, Republic of Korea (HI15C2917).

참고문헌

  1. Brubaker, S. W., K. S. Bonham, I. Zanoni, and J. C. Kagan. 2015. Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33: 257-290.  https://doi.org/10.1146/annurev-immunol-032414-112240
  2. Wu, J., and Z. J. Chen. 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32: 461-488.  https://doi.org/10.1146/annurev-immunol-032713-120156
  3. Thompson, A. J., and S. A. Locarnini. 2007. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol. Cell Biol. 85: 435-445.  https://doi.org/10.1038/sj.icb.7100100
  4. Gee, P., P. K. Chua, J. Gevorkyan, K. Klumpp, I. Najera, D. C. Swinney, and J. Deval. 2008. Essential role of the N-terminal domain in the regulation of RIG-I ATPase activity. J. Biol. Chem. 283: 9488-9496.  https://doi.org/10.1074/jbc.M706777200
  5. O'Neill, L. A., and A. G. Bowie. 2011. The powerstroke and camshaft of the RIG-I antiviral RNA detection machine. Cell 147: 259-261.  https://doi.org/10.1016/j.cell.2011.09.027
  6. Jiang, F., A. Ramanathan, M. T. Miller, G. Q. Tang, M. Gale, Jr., S. S. Patel, and J. Marcotrigiano. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479: 423-427.  https://doi.org/10.1038/nature10537
  7. Baek, S. E., H. Kim, K. B. Kim, S. Yoon, J. Choe, W. Suh, Y. J. Jeong, Y. H. Cho, and D. E. Kim. 2015. Dual effects of duplex RNA harboring 5'-terminal triphosphate on gene silencing and RIG-I mediated innate immune response. Biochem. Biophys. Res. Commun. 456: 591-597.  https://doi.org/10.1016/j.bbrc.2014.11.119
  8. Ranjith-Kumar, C. T., A. Murali, W. Dong, D. Srisathiyanarayanan, R. Vaughan, J. Ortiz-Alacantara, K. Bhardwaj, X. Li, P. Li, and C. C. Kao. 2009. Agonist and antagonist recognition by RIG-I, a cytoplasmic innate immunity receptor. J. Biol. Chem. 284: 1155-1165.  https://doi.org/10.1074/jbc.M806219200
  9. Wang, Y., J. Ludwig, C. Schuberth, M. Goldeck, M. Schlee, H. Li, S. Juranek, G. Sheng, R. Micura, T. Tuschl, G. Hartmann, and D. J. Patel. 2010. Structural and functional insights into 5'-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat. Struct. Mol. Biol. 17: 781-787.  https://doi.org/10.1038/nsmb.1863
  10. Kowalinski, E., T. Lunardi, A. A. McCarthy, J. Louber, J. Brunel, B. Grigorov, D. Gerlier, and S. Cusack. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147: 423-435.  https://doi.org/10.1016/j.cell.2011.09.039
  11. Gack, M. U., Y. C. Shin, C. H. Joo, T. Urano, C. Liang, L. Sun, O. Takeuchi, S. Akira, Z. Chen, S. Inoue, and J. U. Jung. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916-920.  https://doi.org/10.1038/nature05732
  12. Wu, B., A. Peisley, D. Tetrault, Z. Li, E. H. Egelman, K. E. Magor, T. Walz, P. A. Penczek, and S. Hur. 2014. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 55: 511-523.  https://doi.org/10.1016/j.molcel.2014.06.010
  13. Foy, E., K. Li, C. Wang, R. Sumpter, Jr., M. Ikeda, S. M. Lemon, and M. Gale, Jr. 2003. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300: 1145-1148.  https://doi.org/10.1126/science.1082604
  14. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737.  https://doi.org/10.1038/ni1087
  15. Myong, S., S. Cui, P. V. Cornish, A. Kirchhofer, M. U. Gack, J. U. Jung, K. P. Hopfner, and T. Ha. 2009. Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA. Science 323: 1070-1074.  https://doi.org/10.1126/science.1168352
  16. Lassig, C., S. Matheisl, K. M. Sparrer, C. C. de Oliveira Mann, M. Moldt, J. R. Patel, M. Goldeck, G. Hartmann, A. Garcia-Sastre, V. Hornung, K. K. Conzelmann, R. Beckmann, and K. P. Hopfner. 2015. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. Elife 4: e10859. 
  17. Lee, S. Y., H. Y. Jung, T. O. Kim, D. W. Im, K. Y. You, J. M. Back, Y. Kim, H. J. Kim, W. Shin, and Y. S. Heo. 2010. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of the N-terminal domain of DEAD-box RNA helicase from Staphylococcus aureus strain Mu50. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66: 1674-1676.  https://doi.org/10.1107/S1744309110043149
  18. Lee, B., K. B. Kim, S. Oh, J. S. Choi, J. S. Park, D. H. Min, and D. E. Kim. 2010. Suppression of hepatitis C virus genome replication in cells with RNA-cleaving DNA enzymes and short-hairpin RNA. Oligonucleotides 20: 285-296.  https://doi.org/10.1089/oli.2010.0256
  19. Zhu, F. X., S. M. King, E. J. Smith, D. E. Levy, and Y. Yuan. 2002. A Kaposi's sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation. Proc. Natl. Acad. Sci. U. S. A. 99: 5573-5578.  https://doi.org/10.1073/pnas.082420599
  20. Lee, M. K., H. E. Kim, E. B. Park, J. Lee, K. H. Kim, K. Lim, S. Yum, Y. H. Lee, S. J. Kang, J. H. Lee, and B. S. Choi. 2016. Structural features of influenza A virus panhandle RNA enabling the activation of RIG-I independently of 5'-triphosphate. Nucleic Acids Res. doi: 10.1093/nar/gkw525.