DOI QR코드

DOI QR Code

Regulation of IgE-Mediated Food Allergy by IL-9 Producing Mucosal Mast Cells and Type 2 Innate Lymphoid Cells

  • Jee-Boong Lee (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST)
  • 투고 : 2016.05.11
  • 심사 : 2016.08.08
  • 발행 : 2016.08.31

초록

Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.

키워드

참고문헌

  1. Johansson, S. G., T. Bieber, R. Dahl, P. S. Friedmann, B. Q. Lanier, R. F. Lockey, C. Motala, J. A. Ortega Martell, T. A. Platts-Mills, J. Ring, F. Thien, C. P. Van, and H. C. Williams. 2004. Revised nomenclature for allergy for global use: Report of the nomenclature review committee of the world allergy organization, October 2003. J. Allergy Clin. Immunol. 113: 832-836. 
  2. Platts-Mills, T. A. 2015. The allergy epidemics: 1870-2010. J. Allergy Clin. Immunol. 136: 3-13. 
  3. Sicherer, S. H. 2011. Epidemiology of food allergy. J. Allergy Clin. Immunol. 127: 594-602. 
  4. Sicherer, S. H., S. A. Noone, and A. Munoz-Furlong. 2001. The impact of childhood food allergy on quality of life. Ann. Allergy Asthma Immunol. 87: 461-464. 
  5. Flokstra-de Blok, B. M., d. van, V, B. J. Vlieg-Boerstra, J. N. Oude Elberink, A. DunnGalvin, J. O. Hourihane, E. J. Duiverman, and A. E. Dubois. 2010. Health-related quality of life of food allergic patients measured with generic and disease-specific questionnaires. Allergy 65: 1031-1038. 
  6. Lee, J. B., C. Y. Chen, B. Liu, L. Mugge, P. Angkasekwinai, V. Facchinetti, C. Dong, Y. J. Liu, M. E. Rothenberg, S. P. Hogan, F. D. Finkelman, and Y. H. Wang. 2016. IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J. Allergy Clin. Immunol. 137: 1216-1225. 
  7. Chen, C. Y., J. B. Lee, B. Liu, S. Ohta, P. Y. Wang, A. V. Kartashov, L. Mugge, J. P. Abonia, A. Barski, K. Izuhara, M. E. Rothenberg, F. D. Finkelman, S. P. Hogan, and Y. H. Wang. 2015. Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43: 788-802. 
  8. Brandtzaeg, P. 1998. Development and basic mechanisms of human gut immunity. Nutr. Rev. 56: S5-18. 
  9. Lozupone, C. A., J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and R. Knight. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220-230. 
  10. Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9: 799-809. 
  11. Nagler-Anderson, C. 2001. Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1: 59-67. 
  12. Salzman, N. H., K. Hung, D. Haribhai, H. Chu, J. Karlsson-Sjoberg, E. Amir, P. Teggatz, M. Barman, M. Hayward, D. Eastwood, M. Stoel, Y. Zhou, E. Sodergren, G. M. Weinstock, C. L. Bevins, C. B. Williams, and N. A. Bos. 2010. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11: 76-83. 
  13. Moog, F. 1981. The lining of the small intestine. Sci. Am. 245: 154-158, 160, 162. 
  14. CHASE, M. W. 1946. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc. Soc. Exp. Biol. Med. 61: 257-259. 
  15. Iweala, O. I., and C. R. Nagler. 2006. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunol. Rev. 213: 82-100. 
  16. Muraro, A., A. E. Dubois, A. DunnGalvin, J. O. Hourihane, N. W. de Jong, R. Meyer, S. S. Panesar, G. Roberts, S. Salvilla, A. Sheikh, A. Worth, and B. M. Flokstra-de Blok. 2014. EAACI Food allergy and anaphylaxis guidelines. Food allergy health-related quality of life measures. Allergy 69: 845-853. 
  17. Liu, T., S. Navarro, and A. L. Lopata. 2016. Current advances of murine models for food allergy. Mol. Immunol. 70: 104-117. 
  18. Brandt, E. B., R. T. Strait, D. Hershko, Q. Wang, E. E. Muntel, T. A. Scribner, N. Zimmermann, F. D. Finkelman, and M. E. Rothenberg. 2003. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest 112: 1666-1677. 
  19. Elson, C. O., and W. Ealding. 1984. Cholera toxin feeding did not induce oral tolerance in mice and abrogated oral tolerance to an unrelated protein antigen. J. Immunol. 133: 2892-2897. 
  20. Kweon, M. N., M. Yamamoto, M. Kajiki, I. Takahashi, and H. Kiyono. 2000. Systemically derived large intestinal CD4(+) Th2 cells play a central role in STAT6-mediated allergic diarrhea. J. Clin. Invest 106: 199-206. 
  21. Shimoda, K., D. J. van, M. Y. Sangster, S. R. Sarawar, R. T. Carson, R. A. Tripp, C. Chu, F. W. Quelle, T. Nosaka, D. A. Vignali, P. C. Doherty, G. Grosveld, W. E. Paul, and J. N. Ihle. 1996. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380: 630-633. 
  22. Forbes, E. E., K. Groschwitz, J. P. Abonia, E. B. Brandt, E. Cohen, C. Blanchard, R. Ahrens, L. Seidu, A. McKenzie, R. Strait, F. D. Finkelman, P. S. Foster, K. I. Matthaei, M. E. Rothenberg, and S. P. Hogan. 2008. IL-9- and mast cell-mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205: 897-913. 
  23. Metcalfe, D. D., R. D. Peavy, and A. M. Gilfillan. 2009. Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol. 124: 639-646. 
  24. Knol, E. F. 2006. Requirements for effective IgE cross-linking on mast cells and basophils. Mol. Nutr. Food Res. 50: 620-624. 
  25. Galli, S. J., and M. Tsai. 2012. IgE and mast cells in allergic disease. Nat. Med. 18: 693-704. 
  26. Williams, L. W., and S. A. Bock. 1999. Skin testing and food challenges in allergy and immunology practice. Clin. Rev. Allergy Immunol. 17: 323-338. 
  27. Wang, J., and H. A. Sampson. 2007. Food anaphylaxis. Clin. Exp. Allergy 37: 651-660. 
  28. Rescigno, M., G. Rotta, B. Valzasina, and P. Ricciardi-Castagnoli. 2001. Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204: 572-581. 
  29. Blanas, E., G. M. Davey, F. R. Carbone, and W. R. Heath. 2000. A bone marrow-derived APC in the gut-associated lymphoid tissue captures oral antigens and presents them to both CD4+ and CD8+ T cells. J. Immunol. 164: 2890-2896. 
  30. Huang, F. P., N. Platt, M. Wykes, J. R. Major, T. J. Powell, C. D. Jenkins, and G. G. MacPherson. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191: 435-444. 
  31. Martin, E., B. O'Sullivan, P. Low, and R. Thomas. 2003. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18: 155-167. 
  32. Kweon, M. N., K. Fujihashi, Y. Wakatsuki, T. Koga, M. Yamamoto, J. R. McGhee, and H. Kiyono. 1999. Mucosally induced systemic T cell unresponsiveness to ovalbumin requires CD40 ligand-CD40 interactions. J. Immunol. 162: 1904-1909. 
  33. Noval, R. M., O. T. Burton, P. Wise, L. M. Charbonnier, P. Georgiev, H. C. Oettgen, R. Rachid, and T. A. Chatila. 2015. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42: 512-523. 
  34. Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6: 345-352. 
  35. Fallon, P. G., S. J. Ballantyne, N. E. Mangan, J. L. Barlow, A. Dasvarma, D. R. Hewett, A. McIlgorm, H. E. Jolin, and A. N. McKenzie. 2006. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203: 1105-1116. 
  36. Kim, B. S., M. C. Siracusa, S. A. Saenz, M. Noti, L. A. Monticelli, G. F. Sonnenberg, M. R. Hepworth, A. S. Van Voorhees, M. R. Comeau, and D. Artis. 2013. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5: 170ra16. 
  37. Salimi, M., J. L. Barlow, S. P. Saunders, L. Xue, D. Gutowska-Owsiak, X. Wang, L. C. Huang, D. Johnson, S. T. Scanlon, A. N. McKenzie, P. G. Fallon, and G. S. Ogg. 2013. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210: 2939-2950. 
  38. Wang, Y. H., and Y. J. Liu. 2009. Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clin. Exp. Allergy 39: 798-806. 
  39. Wang, Q., J. Du, J. Zhu, X. Yang, and B. Zhou. 2015. Thymic stromal lymphopoietin signaling in CD4(+) T cells is required for TH2 memory. J. Allergy Clin. Immunol. 135: 781-791. 
  40. Iijima, K., T. Kobayashi, K. Hara, G. M. Kephart, S. F. Ziegler, A. N. McKenzie, and H. Kita. 2014. IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. J. Immunol. 193: 1549-1559. 
  41. Saenz, S. A., M. C. Siracusa, J. G. Perrigoue, S. P. Spencer, J. F. Urban, Jr., J. E. Tocker, A. L. Budelsky, M. A. Kleinschek, R. A. Kastelein, T. Kambayashi, A. Bhandoola, and D. Artis. 2010. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464: 1362-1366. 
  42. Owyang, A. M., C. Zaph, E. H. Wilson, K. J. Guild, T. McClanahan, H. R. Miller, D. J. Cua, M. Goldschmidt, C. A. Hunter, R. A. Kastelein, and D. Artis. 2006. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203: 843-849. 
  43. Angkasekwinai, P., H. Park, Y. H. Wang, Y. H. Wang, S. H. Chang, D. B. Corry, Y. J. Liu, Z. Zhu, and C. Dong. 2007. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204: 1509-1517. 
  44. Muto, T., A. Fukuoka, K. Kabashima, S. F. Ziegler, K. Nakanishi, K. Matsushita, and T. Yoshimoto. 2014. The role of basophils and proallergic cytokines, TSLP and IL-33, in cutaneously sensitized food allergy. Int. Immunol. 26: 539-549. 
  45. McKenzie, G. J., C. L. Emson, S. E. Bell, S. Anderson, P. Fallon, G. Zurawski, R. Murray, R. Grencis, and A. N. McKenzie. 1998. Impaired development of Th2 cells in IL-13-deficient mice. Immunity 9: 423-432. 
  46. Wu, D., R. Ahrens, H. Osterfeld, T. K. Noah, K. Groschwitz, P. S. Foster, K. A. Steinbrecher, M. E. Rothenberg, N. F. Shroyer, K. I. Matthaei, F. D. Finkelman, and S. P. Hogan. 2011. Interleukin-13 (IL-13)/IL-13 receptor alpha1 (IL-13Ralpha1) signaling regulates intestinal epithelial cystic fibrosis transmembrane conductance regulator channel-dependent Cl-secretion. J. Biol. Chem. 286: 13357-13369. 
  47. Gurish, M. F., and K. F. Austen. 2012. Developmental origin and functional specialization of mast cell subsets. Immunity 37: 25-33. 
  48. Osterfeld, H., R. Ahrens, R. Strait, F. D. Finkelman, J. C. Renauld, and S. P. Hogan. 2010. Differential roles for the IL-9/IL-9 receptor alpha-chain pathway in systemic and oral antigen-induced anaphylaxis. J. Allergy Clin. Immunol. 125: 469-476. 
  49. Ahrens, R., H. Osterfeld, D. Wu, C. Y. Chen, M. Arumugam, K. Groschwitz, R. Strait, Y. H. Wang, F. D. Finkelman, and S. P. Hogan. 2012. Intestinal mast cell levels control severity of oral antigen-induced anaphylaxis in mice. Am. J. Pathol. 180: 1535-1546. 
  50. Steenwinckel, V., J. Louahed, M. M. Lemaire, C. Sommereyns, G. Warnier, A. McKenzie, F. Brombacher, S. J. Van, and J. C. Renauld. 2009. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol. 182: 4737-4743. 
  51. Brough, H. A., D. J. Cousins, A. Munteanu, Y. F. Wong, A. Sudra, K. Makinson, A. C. Stephens, M. Arno, L. Ciortuz, G. Lack, and V. Turcanu. 2014. IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J. Allergy Clin. Immunol. 134: 1329-1338. 
  52. Veldhoen, M., C. Uyttenhove, S. J. van, H. Helmby, A. Westendorf, J. Buer, B. Martin, C. Wilhelm, and B. Stockinger. 2008. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9: 1341-1346. 
  53. Stassen, M., M. Arnold, L. Hultner, C. Muller, C. Neudorfl, T. Reineke, and E. Schmitt. 2000. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J. Immunol. 164: 5549-5555. 
  54. Shimbara, A., P. Christodoulopoulos, A. Soussi-Gounni, R. Olivenstein, Y. Nakamura, R. C. Levitt, N. C. Nicolaides, K. J. Holroyd, A. Tsicopoulos, J. J. Lafitte, B. Wallaert, and Q. A. Hamid. 2000. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105: 108-115. 
  55. Abdelilah, S., K. Latifa, N. Esra, L. Cameron, L. Bouchaib, N. Nicolaides, R. Levitt, and Q. Hamid. 2001. Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. J. Immunol. 166: 2768-2774. 
  56. Barlow, J. L., and A. N. McKenzie. 2014. Type-2 innate lymphoid cells in human allergic disease. Curr. Opin. Allergy Clin. Immunol. 14: 397-403.