DOI QR코드

DOI QR Code

Differential Chemokine Signature between Human Preadipocytes and Adipocytes

  • Rosa Mistica C. Ignacio (Department of Biochemistry and Cancer Biology, Meharry Medical College) ;
  • Carla R. Gibbs (Department of Biochemistry and Cancer Biology, Meharry Medical College) ;
  • Eun-Sook Lee (Department of Physiology, Meharry Medical College) ;
  • Deok-Soo Son (Department of Biochemistry and Cancer Biology, Meharry Medical College)
  • Received : 2016.02.20
  • Accepted : 2016.05.25
  • Published : 2016.06.30

Abstract

Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity.

Keywords

Acknowledgement

This research was supported, in whole or in part, by National Institutes of Health as the following grants: NIGMS SC1 089630 and R01ES024756 (E.L.), and NIAID SC1AI089073 and NCI SC1CA200519 (D.S.). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

References

  1. Wagner, M., E. S. Samdal Steinskog, and H. Wiig. 2015. Adipose tissue macrophages: the inflammatory link between obesity and cancer? Expert Opin. Ther. Targets 19: 527-538. https://doi.org/10.1517/14728222.2014.991311
  2. Lafontan, M. 2014. Adipose tissue and adipocyte dysregulation. Diabetes Metab. 40: 16-28. https://doi.org/10.1016/j.diabet.2013.08.002
  3. Crunkhorn, S. 2013. Metabolic disorders: Breaking the links between inflammation and diabetes. Nat. Rev. Drug Discov. 12: 261.
  4. Calle, E. E., and R. Kaaks. 2004. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4: 579-591. https://doi.org/10.1038/nrc1408
  5. Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature 444: 860-867. https://doi.org/10.1038/nature05485
  6. Wellen, K. E., and G. S. Hotamisligil. 2003. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112: 1785-1788. https://doi.org/10.1172/JCI20514
  7. Olefsky, J. M., and C. K. Glass. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72: 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
  8. Meijer, K., V. M. de, S. Al-Lahham, M. Bruinenberg, D. Weening, M. Dijkstra, N. Kloosterhuis, R. J. van der Leij, W. H. van der, B. J. Kroesen, R. Vonk, and F. Rezaee. 2011. Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One 6: e17154.
  9. Wang, Y. 2012. Small lipid-binding proteins in regulating endothelial and vascular functions: focusing on adipocyte fatty acid binding protein and lipocalin-2. Br. J. Pharmacol. 165: 603-621. https://doi.org/10.1111/j.1476-5381.2011.01528.x
  10. Chavey, C., G. Lazennec, S. Lagarrigue, C. Clape, I. Iankova, J. Teyssier, J. S. Annicotte, J. Schmidt, C. Mataki, H. Yamamoto, R. Sanches, A. Guma, V. Stich, M. Vitkova, B. Jardin-Watelet, E. Renard, R. Strieter, A. Tuthill, G. S. Hotamisligil, A. Vidal-Puig, A. Zorzano, D. Langin, and L. Fajas. 2009. CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab. 9: 339-349. https://doi.org/10.1016/j.cmet.2009.03.002
  11. Zlotnik, A., O. Yoshie, and H. Nomiyama. 2006. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7: 243.
  12. Lazennec, G., and A. Richmond. 2010. Chemokines and chemokine receptors: new insights into cancer-related inflammation. Trends Mol. Med. 16: 133-144. https://doi.org/10.1016/j.molmed.2010.01.003
  13. Deng, T., C. J. Lyon, L. J. Minze, J. Lin, J. Zou, J. Z. Liu, Y. Ren, Z. Yin, D. J. Hamilton, P. R. Reardon, V. Sherman, H. Y. Wang, K. J. Phillips, P. Webb, S. T. Wong, R. F. Wang, and W. A. Hsueh. 2013. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 17: 411-422. https://doi.org/10.1016/j.cmet.2013.02.009
  14. Perez-Llamas, C., and N. Lopez-Bigas. 2011. Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6: e19541.
  15. Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante, Jr. 2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796-1808. https://doi.org/10.1172/JCI200319246
  16. Xu, H., G. T. Barnes, Q. Yang, G. Tan, D. Yang, C. J. Chou, J. Sole, A. Nichols, J. S. Ross, L. A. Tartaglia, and H. Chen. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112: 1821-1830. https://doi.org/10.1172/JCI200319451
  17. Nara, N., Y. Nakayama, S. Okamoto, H. Tamura, M. Kiyono, M. Muraoka, K. Tanaka, C. Taya, H. Shitara, R. Ishii, H. Yonekawa, Y. Minokoshi, and T. Hara. 2007. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J. Biol. Chem. 282: 30794-30803. https://doi.org/10.1074/jbc.M700412200
  18. Ping, D., G. H. Boekhoudt, E. M. Rogers, and J. M. Boss. 1999. Nuclear factor-kappa B p65 mediates the assembly and activation of the TNF-responsive element of the murine monocyte chemoattractant-1 gene. J. Immunol. 162: 727-734. https://doi.org/10.4049/jimmunol.162.2.727
  19. Son, D. S., A. K. Parl, V. M. Rice, and D. Khabele. 2007. Keratinocyte chemoattractant (KC)/human growth-regulated oncogene (GRO) chemokines and pro-inflammatory chemokine networks in mouse and human ovarian epithelial cancer cells. Cancer Biol. Ther. 6: 1302-1312. https://doi.org/10.4161/cbt.6.8.4506
  20. Kabir, S. M., E. S. Lee, and D. S. Son. 2014. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 3: 97-106. https://doi.org/10.4161/adip.28110