Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01053928), and by the Gyeongsang National University Fund for Professors on Sabbatical leave, 2016.
References
- Haigis, M. C., and D. A. Sinclair. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5: 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
- Roth, M., and W. Y. Chen. 2014. Sorting out functions of sirtuins in cancer. Oncogene 33: 1609-1620. https://doi.org/10.1038/onc.2013.120
- Lopez-Otin, C., M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153: 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
- Campisi, J. 2013. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75: 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
- Ghosh, S., and Z. Zhou. 2015. SIRTain regulators of premature senescence and accelerated aging. Protein Cell 6: 322-333. https://doi.org/10.1007/s13238-015-0149-1
- Menghini, R., V. Casagrande, M. Cardellini, E. Martelli, A. Terrinoni, F. Amati, M. Vasa-Nicotera, A. Ippoliti, G. Novelli, G. Melino, R. Lauro, and M. Federici. 2009. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120: 1524-1532. https://doi.org/10.1161/CIRCULATIONAHA.109.864629
- Stunkel, W., and R. M. Campbell. 2011. Sirtuin 1 (SIRT1): the misunderstood HDAC. J. Biomol. Screen. 16: 1153-1169. https://doi.org/10.1177/1087057111422103
- Carafa, V., A. Nebbioso, and L. Altucci. 2012. Sirtuins and disease: the road ahead. Front. Pharmacol. 3: 4.
- Napper, A. D., J. Hixon, T. McDonagh, K. Keavey, J. F. Pons, J. Barker, W. T. Yau, P. Amouzegh, A. Flegg, E. Hamelin, R. J. Thomas, M. Kates, S. Jones, M. A. Navia, J. O. Saunders, P. S. DiStefano, and R. Curtis. 2005. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48: 8045-8054. https://doi.org/10.1021/jm050522v
- Mai, A., S. Massa, S. Lavu, R. Pezzi, S. Simeoni, R. Ragno, F. R. Mariotti, F. Chiani, G. Camilloni, and D. A. Sinclair. 2005. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J. Med. Chem. 48: 7789-7795. https://doi.org/10.1021/jm050100l
- Heltweg, B., T. Gatbonton, A. D. Schuler, J. Posakony, H. Li, S. Goehle, R. Kollipara, R. A. Depinho, Y. Gu, J. A. Simon, and A. Bedalov. 2006. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66: 4368-4377. https://doi.org/10.1158/0008-5472.CAN-05-3617
- Trapp, J., R. Meier, D. Hongwiset, M. U. Kassack, W. Sippl, and M. Jung. 2007. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2: 1419-1431. https://doi.org/10.1002/cmdc.200700003
- Outeiro, T. F., E. Kontopoulos, S. M. Altmann, I. Kufareva, K. E. Strathearn, A. M. Amore, C. B. Volk, M. M. Maxwell, J. C. Rochet, P. J. McLean, A. B. Young, R. Abagyan, M. B. Feany, B. T. Hyman, and A. G. Kazantsev. 2007. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317: 516-519. https://doi.org/10.1126/science.1143780
- Lain, S., J. J. Hollick, J. Campbell, O. D. Staples, M. Higgins, M. Aoubala, A. McCarthy, V. Appleyard, K. E. Murray, L. Baker, A. Thompson, J. Mathers, S. J. Holland, M. J. Stark, G. Pass, J. Woods, D. P. Lane, and N. J. Westwood. 2008. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13: 454-463. https://doi.org/10.1016/j.ccr.2008.03.004
- Lara, E., A. Mai, V. Calvanese, L. Altucci, P. Lopez-Nieva, M. L. Martinez-Chantar, M. Varela-Rey, D. Rotili, A. Nebbioso, S. Ropero, G. Montoya, J. Oyarzabal, S. Velasco, M. Serrano, M. Witt, A. Villar-Garea, A. Imhof, J. M. Mato, M. Esteller, and M. F. Fraga. 2009. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28: 781-791. https://doi.org/10.1038/onc.2008.436
- Kalle, A. M., A. Mallika, J. Badiger, Alinakhi, P. Talukdar, and Sachchidanand. 2010. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun. 401: 13-19. https://doi.org/10.1016/j.bbrc.2010.08.118
- Zhang, Q., S. X. Zeng, Y. Zhang, Y. Zhang, D. Ding, Q. Ye, S. O. Meroueh, and H. Lu. 2012. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol. Med. 4: 298-312. https://doi.org/10.1002/emmm.201100211
- Choi, G., J. Lee, J. Y. Ji, J. Woo, N. S. Kang, S. Y. Cho, H. R. Kim, J. D. Ha, and S. Y. Han. 2013. Discovery of a potent small molecule SIRT1/2 inhibitor with anticancer effects. Int. J. Oncol. 43: 1205-1211. https://doi.org/10.3892/ijo.2013.2035
- Mitsui, Y., and E. L. Schneider. 1976. Increased nuclear sizes in senescent human diploid fibroblast cultures. Exp. Cell Res. 100: 147-152. https://doi.org/10.1016/0014-4827(76)90336-0
- Kobayashi, Y., R. Sakemura, A. Kumagai, E. Sumikawa, M. Fujii, and D. Ayusawa. 2008. Nuclear swelling occurs during premature senescence mediated by MAP kinases in normal human fibroblasts. Biosci. Biotechnol. Biochem. 72: 1122-1125. https://doi.org/10.1271/bbb.70760
- North, B. J., B. L. Marshall, M. T. Borra, J. M. Denu, and E. Verdin. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11: 437-444. https://doi.org/10.1016/S1097-2765(03)00038-8
- Sadaie, M., C. Dillon, M. Narita, A. R. Young, C. J. Cairney, L. S. Godwin, C. J. Torrance, D. C. Bennett, W. N. Keith, and M. Narita. 2015. Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition. Mol. Biol. Cell 26: 2971-2985. https://doi.org/10.1091/mbc.E15-01-0003