DOI QR코드

DOI QR Code

In vitro Stimulation of NK Cells and Lymphocytes Using an Extract Prepared from Mycelial Culture of Ophiocordyceps sinensis

  • Sun-Hee Jang (Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Jisang Park (Department of Bioactive Materials and Research Center of Bioactive Materials, Chonbuk National University) ;
  • Seung-Hwan Jang (Chebigen Inc.) ;
  • Soo-Wan Chae (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Su-Jin Jung (Clinical Trial Center for Functional Foods, Chonbuk National University Hospital) ;
  • Byung-Ok So (Clinical Trial Center for Functional Foods, Chonbuk National University Hospital) ;
  • Ki-Chan Ha (Healthcare Claims & Management Inc.) ;
  • Hong-Sig Sin (Chebigen Inc.) ;
  • Yong-Suk Jang (Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University)
  • Received : 2016.02.05
  • Accepted : 2016.04.11
  • Published : 2016.04.30

Abstract

Ophiocordyceps sinensis is a natural fungus that has been valued as a health food and used in traditional Chinese medicine for centuries. The fungus is parasitic and colonizes insect larva. Naturally occurring O. sinensis thrives at high altitude in cold and grassy alpine meadows on the Himalayan mountain ranges. Wild Ophiocordyceps is becoming increasingly rare in its natural habitat, and its price limits its use in clinical practice. Therefore, the development of a standardized alternative is a great focus of research to allow the use of Ophiocordyceps as a medicine. To develop an alternative for wild Ophiocordyceps, a refined standardized extract, CBG-CS-2, was produced by artificial fermentation and extraction of the mycelial strain Paecilomyces hepiali CBG-CS-1, which originated from wild O. sinensis. In this study, we analyzed the in vitro immune-modulating effect of CBG-CS-2 on natural killer cells and B and T lymphocytes. CBG-CS-2 stimulated splenocyte proliferation and enhanced Th1-type cytokine expression in the mouse splenocytes. Importantly, in vitro CBG-CS-2 treatment enhanced the killing activity of the NK-92MI natural killer cell line. These results indicate that the mycelial culture extract prepared from Ophiocordyceps exhibits immune-modulating activity, as was observed in vivo and this suggests its possible use in the treatment of diseases caused by abnormal immune function.

Keywords

Acknowledgement

This study was supported by a contract with Ministry of Agriculture, Food, and Rural Affairs (MAFRA)/Korea National Food Cluster (FOODPOLIS) to Dr. S.-W. Chae. Mr. J. Park was supported by the BK21 Plus program in the Department of Bioactive Material Sciences.

References

  1. Sung, J. M., H. K. Lee, Y. S. Choi, Y. Y. Kim, S. H. Kim, and G. H. Sung. 1997. Distribution and taxonomy of entomopathogenic fungal species from Korea. Kor. J. Mycol. 25: 239-252.
  2. Sung, J. M., C. H. Kim, K. J. Yang, H. K. Lee, and Y. S. Kim. 1993. Studies on distribution and utilization of Cordyceps militaris and C. nutans. Kor. J. Mycol. 21: 94-105.
  3. Sung, J. M., H. K. Lee, Y. J. Yoo, Y. S. Choi, S. H. Kim, Y. O. Kim, and S. H. Sung. 1998. Classification of Cordyceps species based on protein banding pattern. Kor. J. Mycol. 26: 1-7.
  4. Sung, G. H., N. L. Hywel-Jones, J. M. Sung, J. J. Luangsa-ard, B. Shrestha, and J. W. Spatafora. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57: 5-59.
  5. Jang, Y. S., and S. W. Hong. 1986. Notes on unrecorded fresh fungi of Cordyceps in Korea. Kor. J. Mycol. 14: 85-88.
  6. Tuli, H. S., S. S. Sandhu, and A. K. Sharma. 2014. Pharmacological and therapeutic of Cordyceps with special reference to Codycepin. 3 Biotech. 4: 1-12.
  7. Holliday, J. C., and M. P. Cleaver. 2008. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). A review. Int. J. Med. Mushr. 10: 219-234.
  8. Wang, S. Y., and M. S. Shiao. 2000. Pharmacological functions of Chinese medicinal fungus Cordyceps sinensis and related species. J. Food Drug Anal. 8: 248-257.
  9. Zhou, X., Z. Gong, Y. Su, J. Lin, and K. Tang. 2009. Cordyceps fungi: natural products, pharmacological functions and developmental products. J. Pharm. Pharmacol. 61: 279-291.
  10. Zhu, J. S., G. M. Halpern, and K. Jones. 1998. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis. J. Altern. Complement. Med. 4: 289-303.
  11. Siu, K. M., D. H. F. Mak, P. Y. Chiu, M. K. T. Poon, Y. Du, and K. M. Ko. 2004. Pharmrcological basis of 'Yin-nourishing' and 'Yang-invigorating' actions of Cordyceps, a Chinese tonifying herb. Life Sci. 76: 385-395.
  12. Khan, M. A., M. Tania, D. Zhang, and H. Chen. 2010. Cordyceps mushroom: A potent anticancer nutraceutical. Open Nutraceut. J. 3: 179-183.
  13. Liu, W. C., S. C. Wang, M. L. Tsai, M. C. Chen, Y. C. Wang, J. H. Hong, W. H. McBride, and C. S. Chiang. 2006. Protection against radiation-induced bone marrow and intestinal injuries by Cordyceps sinensis, a Chinese herbal medicine. Rad. Res. 166: 900-907.
  14. Ko, W. S., S. L. Hsu, C. C. Chyau, K. C. Chen, and R. Y. Peng. 2009. Compound Cordyceps TCM-700C exhibits potent hepatoprotective capability in animal model. Fitoterapia 81: 1-7.
  15. Kiho, T., J. Hui, A. Yamane, and S. Ukai. 1993. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol. Pharm. Bull. 16: 1291-1293.
  16. Kiho, T., A. Yamane, J. Hui, S. Usui, and S. Ukai. 1996. Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol. Pharm. Bull. 19: 294-296.
  17. Zhao, C. S., W. T. Yin, J. Y. Wang, Y. Zhang, H. Yu, R. Cooper, C. Smidt, and J. S. Zhu. 2002. CordyMax Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats. J. Altern. Complement. Med. 8: 309-314.
  18. Lo, H. C., S. T. Tu, K. C. Lin, and S. C. Lin. 2004. The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin. Life Sci. 74: 2897-2908.
  19. Li, S. P., G. H. Zhang, Q. Zeng, Z. G. Huang, Y. T. Wang, T. T. X. Dong, and K. W. K. Tsim. 2006. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13: 428-433.
  20. Kuo, C. F., C. C. Chen, Y. H. Luo, R. Y. Huang, W. J. Chuang, C. C. Sheu, and Y. S. Lin. 2005. Cordyceps sinensis mycelium protects mice from group A streptococcal infection. J. Med. Microbiol. 54: 795-802.
  21. Jang, S. H., S. H. Kim, H. Y. Lee, S. H. Jang, H. Jang, S. W. Chae, S. J. Jung, B. O. So, K. C. Ha, H. S. Sin, and Y. S. Jang. 2015. Immune-modulating activity of extract prepared from mycelial culture of Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes). Int. J. Med. Mushrooms 17: 1189-1199.
  22. Langhans, B., M. Ahrendt, J. Nattermann, T. Sauerbruch, and U. Spengler. 2005. Comparative study of NK cell-mediated cytotoxicity using radioactive and flow cytometric cytotoxicity assays. J. Immunol. Methods 306: 161-168.