DOI QR코드

DOI QR Code

Removal Characteristics of Boron and Humic Acid by Pre-blending Seawater and Brackish Water Using UF-SWRO Hybrid Process in Pilot-scale Plant for Desalination

UF-SWRO 혼합공정을 이용한 해수담수화 파일럿 플랜트에서의 해수와 기수의 블렌딩을 통한 보론 및 휴믹산 제거 특성

  • Kim, Won-Kyu (Korea Interfacial Science and Engineering Institute) ;
  • Shin, Sung-Hoon (Korea Interfacial Science and Engineering Institute) ;
  • Lee, Haksu (Korea Interfacial Science and Engineering Institute) ;
  • Woo, Dal-Sik (Korea Interfacial Science and Engineering Institute)
  • Received : 2015.11.25
  • Accepted : 2016.01.26
  • Published : 2016.01.31

Abstract

Using UF-SWRO hybrid process, pre-blending tests of seawater and brackish water were performed to investigate the effects on removal of boron and humic acid (HA). Feedwater pre-blending was set based on TDS concentration from 15,000 mg/L to 27,000 mg/L and analyzed for boron removal characteristics. Also organics rejection at same TDS concentration range was investigated by injecting HA. Boron concentration appeared to be high as TDS concentration was high ranging from 76.60% to 83.27%, but boron concentration in final produced water was increased up to 0.69 mg/L from 0.48 mg/L. In cases of HA tests at 10 mg/L, 22,500 mg/L TDS appeared to be higher removal rate of 17.59% than a very poor result of 8.43% in 27,000 mg/L. But high HA removal rate of 57.14% was obtained in produced water with 22,500 mg/L TDS containing 10 mg/L of HA and 27,000 mg/L TDS yielded lower boron removal rate of 54.49%. Meanwhile it was found that a relatively high flux and recovery rate were obtained following process when feedwater was injected with HA. It is considered that most of fouling substances were eliminated by binding between HA and $Ca^{2+}$. Thus, when desalination using UF-SWRO with respect to boron and HA, TDS concentration is determined to be advantageous as lower.

UF (ultrafiltration)-SWRO (seawater reverse osmosis) 공정을 이용하여 해수와 기수의 유입수 블렌딩(pre-blending)이 보론(boron)과 휴믹산(humic acid)의 제거에 미치는 영향을 조사하였다. 유입수 블렌딩은 TDS (total dissolved solids) 농도를 기준으로 15,000 mg/L~27,000 mg/L까지 설정하였으며, RO에서의 보론 제거특성을 분석하였다. 또한, 동일한 TDS 농도범위에서 휴믹산을 주입하여 유기물 제거 특성을 알아보았다. 보론은 TDS 농도가 높아질수록 제거율은 76.60% - 83.27%로 높게 나타났지만, 최종 생산된 생산수의 보론 농도는 0.48 mg/L-0.69 mg/L로 높아져 유입수 내 보론 농도가 다량 유입될 시 유입수 블렌딩이 필요할 것으로 판단된다. 휴믹산의 경우 10 mg/L 수준일 경우 TDS 농도 22,500 mg/L가 27,000 mg/L 보다 제거율이 높게 나타났지만, 휴믹산이 5 mg/L 수준일 경우 TDS 농도 18,000 mg/L가 15,000 mg/L보다 높게 나타났다. 한편, 휴믹산이 주입되었을 때 UF-SWRO 공정에서는 오히려 플럭스(flux)와 회수율(recovery rate)이 증가하는 효과를 나타내었는데, 이는 파울링 물질이 $Ca^{2+}$와 휴믹산의 결합에 의해 대부분 제거되어 나타난 것으로 판단된다. 따라서 UF-SWRO를 이용한 해수 담수화 시 보론 농도와 휴믹산 제거측면에서 TDS 농도가 낮을수록 유리하다고 판단된다.

Keywords

References

  1. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J. and Mayes, A. M., "Science and technology for water purification in the coming decades," Nature, 452(7185), 301-310(2008). https://doi.org/10.1038/nature06599
  2. Baltasar, P. and Lourdes, G. R., "Current trends and future prospects in the design of seawater reverse osmosis desalination technology," Desalination, 284(4), 1-8(2012). https://doi.org/10.1016/j.desal.2011.09.010
  3. Ali, A. T. and Adel, O. S., "Alternative design to dual stage NF seawater desalination using high rejection brackish water membranes," Desalination, 273(2-3), 391-397(2011). https://doi.org/10.1016/j.desal.2011.01.056
  4. IDA desalination yearbook 2009-2010, "Global Water Intelligence," IDA, 6-7(2009).
  5. Zaidi, S. M. J., Fadhillah, F., Khan, Z. and Ismail, A. F., "Salt and water transport in reverse osmosis thin tilm composite seawater desalination membranes," Desalination, 368(15), 202-213(2015). https://doi.org/10.1016/j.desal.2015.02.026
  6. Vrouwenvelder, H. S., van Paassen, J. A. M., Folmer, H. C., Hofman, J. A. M. H., Nederlof, M. M. and van der Kooij, D., "Biofouling of membranes for drinking water production," Desalination, 118(1-3), 157-166(1998). https://doi.org/10.1016/S0011-9164(98)00116-7
  7. National Research Council, Desalination: A National Perspective, Amy K. Zander, The National Academies Press, Washington, D. C., pp. 138-141(2008).
  8. Jermann, D., Pronk, W., Kagi, R., Halbeisen, M. and Boller, M., "Influence of interactions between NOM and particles on UF fouling mechanisms," Water Res., 42(14), 3870-3878 (2008). https://doi.org/10.1016/j.watres.2008.05.013
  9. Yuan, W. and Zydney, A. L., "Humic acid fouling during microfiltration," J. Membr. Sci., 157(1), 1-12(1999). https://doi.org/10.1016/S0376-7388(98)00329-9
  10. Huang, H., Young, T. and Jacangelo, J. G., "Novel approach for the analysis of bench-scale, low pressure membrane fouling in water treatment," J. Membr. Sci., 334(1-2), 1-8(2009). https://doi.org/10.1016/j.memsci.2009.01.049
  11. Li, S., Heijman, S. G. J., Verberk, J. Q. J. C. and van Dijk, J. C., "Influence of Ca and Na ions in backwash water on ultrafiltration fouling control," Desalination, 250(2), 861-864 (2010). https://doi.org/10.1016/j.desal.2008.11.057
  12. Pinheiro, J., Mota, A., d'Oliveira, J. and Martinho, J., "Dynamic properties of humic matter by dynamic light scattering and voltammetry," Anal. Chim. Acta, 329(1-2), 15-24(1996). https://doi.org/10.1016/0003-2670(96)00097-9
  13. World Health Organization (WHO), Guidelines for Drinking-Water Quality fourth edition, http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en(2011).
  14. Official Journal of European Communities, Council Directive 98/83/EC, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&rid=12(1998).
  15. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. and Moulin, P., "Reverse osmosis desalination: water sources, technology, and today's challenges," Water Res., 43(9), 2317-2348(2009). https://doi.org/10.1016/j.watres.2009.03.010
  16. Kabay, N., Bryjak, M., Schlosser, S., Kitis, M., Avlonitis, S., Matejka, Z., AI-Mutaz, I. and Yuksel, M., "Adsorption-membrane filtration (AMF) hybrid process for boron removal from seawater: an overview," Desalination, 223(1-3), 38-48 (2008). https://doi.org/10.1016/j.desal.2007.01.196
  17. Yavuz, E., Arar, O., Yuksel, M., Yuksel, U. and Kabay, N., "Removal of boron from geothermal water by RO system-II-effect of pH," Desalination, 310(1), 135-139(2013). https://doi.org/10.1016/j.desal.2012.07.044
  18. Abdul Azis, P. K., Al-Tisan I. and Sasikumar, N., "Biofouling potential and environmental factors of seawater at a desalination plant intake," Desalination, 135(1-3), 69-82(2001). https://doi.org/10.1016/S0011-9164(01)00140-0
  19. Guler, E., Kabay, N., Yuksel, M., Yavuz, E. and Yuksel, U., "A comparative study for boron removal from seawater by two types of polyamide thin film composite SWRO membranes," Desalination, 273(1), 81-84(2011). https://doi.org/10.1016/j.desal.2010.10.045
  20. Bujakowski, W., Pajak, L. and Tomaszewska, B., "Renewable energy resources in the Silesian Voivodship (southern Poland) and their potential utilization," Miner. Resour. Manag., 24 (2), 409-426(2008).
  21. Hoffer, E. and Kedem, O., "Ion separation by hyperfiltration through charged membrane. I. Calculation based on TMS model," Indus. Eng. Chem. Proc. Des. Dev., 11(2), 221-225 (1972a). https://doi.org/10.1021/i260042a601
  22. Hoffer, E. and Kedem, O., "Ion separation by hyperfiltration through charged membranes. II. Separation performance of collodion-polybase membranes," Indus. Eng. Chem. Proc. Des. Dev., 11(2), 226-228(1972b). https://doi.org/10.1021/i260042a012
  23. Yaroshchuk, A. E., "Negative rejection of ions in pressure-driven membrane processes," Adv. Colloid Interface Sci. 139(1-2), 150-173(2008). https://doi.org/10.1016/j.cis.2008.01.004
  24. Nir, O., Marvin, E. and Lahav, O., "Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling," Water Res., 64(1), 187-195(2014). https://doi.org/10.1016/j.watres.2014.07.006
  25. Busch, M., Michols, W. E., Jons, S., Redondo, J. and Witte, J. D., "Boron removal in sea water desalination," Int. Desalination and Water Reuse Quart., 13(4), 25(2004).
  26. Chang, H., Qu, F., Liu, B., Yu, H., Li, K., Shao, S., Li, G. and Liang, H., "Hydraulic irreversibility of ultrafiltration membrane fouling by humic acid: Effects of membrane properties and backwash water composition," J. Membr. Sci., 493(1), 723-733(2015). https://doi.org/10.1016/j.memsci.2015.07.001
  27. Hong, S. K. and Elimelech, M., "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes," J. Membr. Sci., 132(2), 159-81(1997). https://doi.org/10.1016/S0376-7388(97)00060-4