DOI QR코드

DOI QR Code

The Relation between Fertilization Practices and Functional Metabolites of Crops: A Review

  • Lim, Jung-Eun (Division of Soil & Fertilizer, National Academy of Agricultural Science) ;
  • Cho, Min-Ji (Division of Soil & Fertilizer, National Academy of Agricultural Science) ;
  • Yun, Hye-Jin (Division of Soil & Fertilizer, National Academy of Agricultural Science) ;
  • Ha, Sang-Keun (Division of Soil & Fertilizer, National Academy of Agricultural Science) ;
  • Lee, Deog-Bae (Division of Soil & Fertilizer, National Academy of Agricultural Science) ;
  • Sung, Jwa-Kyung (Division of Soil & Fertilizer, National Academy of Agricultural Science)
  • 투고 : 2015.12.23
  • 심사 : 2016.04.27
  • 발행 : 2016.04.30

초록

Various researches on the effects of fertilization levels on functional metabolites in crop have been conducted. This review summarizes the previous studies on the relation between fertilization supply and accumulation of metabolites (phenolics, carotenoids, ascorbic acid and glucosinolates) which function as antioxidants in crop. The accumulation of phenolic compounds is related to the activation of phenylalanine ammonia lyase (PAL) in phenylpropanoid pathway. Most of the previous studies discuss that low nitrogen (N) supply activates PAL, thereby increasing the synthesis of phenolics. Similarly, high N supply leads to a decrease in ascorbic acid because of the shading effect derived from the accelerated vegetative growth under high N level. Unlike the phenolics and ascorbic acid, carotenoids are accumulated with increasing N supply. In this regard, the previous studies explain that N is a main element closely associated with formation of key enzyme for the synthesis of carotenoids. Glucosinolates are generally increased under decreasing N supply and increasing S supply. Although the previous studies show similar trends about the accumulation of metabolites by nutrient level, they also suggest that many other factors including crop types, cultivars, cultural environment (water, temperature, light, etc.) influence the accumulation of functional metabolites in crop.

키워드

참고문헌

  1. Adam, A., V. Crespy, M.-A. Levrat-Verny, F. Leenhardt, M. Leuillet, C. Demigne, and C. Remesy. 2002. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 132:1962-1968. https://doi.org/10.1093/jn/132.7.1962
  2. Akerstrom, A., A. Forsum, K. Rumpunen, A. Jaderlund, and U. Bang. 2009. Effects of sampling time and nitrogen fertilization on anthocyanidin levels in Vaccinium myrtillus fruit. J. Agric. Food Chem. 57:3340-3345. https://doi.org/10.1021/jf8037743
  3. Anttonen, M.J., K.I. Hoppula, R. Nestby, M.J. Verheul, and R.O. Karjalainen. 2006. Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, and genotype on the contents of selected phenolics in strawberry (Fragaria X ananassa Duch.) fruits. J. Agric. Food Chem. 54:2614-2620. https://doi.org/10.1021/jf052947w
  4. Benard, C., H. Gautier, F. Bourgaud, D. Grasselly, B. Navez, C. Caris-Veyrat, M. Weiss, and M. Genard. 2009. Effects of low nitrogen supply on tomato (Solanum lycopersicum) fruit yield and quality with special emphasis on sugars, acids, ascorbate, carotenoids, and phenolic compounds. J. Agric. Food Chem. 57:4112-4123. https://doi.org/10.1021/jf8036374
  5. Boo, H.O., H.H. Lee, J.W. Lee, S.J. Hwang, and S.U. Park. 2009. Different of total phenolics and flavonoids, radical scavenging activities and nitrite scavenging effects of Momordica charantia L. according to cultivars. Korean J. Medicinal Crop Sci. 17:15-20.
  6. Bryant, J.P., F.S. Chapin, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 40:357-368. https://doi.org/10.2307/3544308
  7. Chenard, C.H., D.A. Kopsell, and D.E. Kopsell. 2005. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J. Plant Nutr. 28:285-297. https://doi.org/10.1081/PLN-200047616
  8. Choi, S.H., D.H. Kim, and D.S. Kim. 2011. Comparison of ascorbic acid, lycopene, ${\beta}$-carotene and ${\alpha}$-carotene contents in processed tomato products, tomato cultivar and part. Korean J. Cul. R. 17:263-272.
  9. Coria-Cayupan, Y.S., M.I.S. de Pinto, and M.A. Nazareno. 2009. Vatiations in bioactive substance contents and crop yields of lettuce (Lactuca sativa L.) cultivated in soils with different fertilization treatments. J. Agric. Food Chem. 57:10122-10129. https://doi.org/10.1021/jf903019d
  10. Dai, J. and R.J. Mumper. 2010. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules. 15:7313-7352. https://doi.org/10.3390/molecules15107313
  11. Duthie, G.G., S.J. Duthie, and J.A.M. Kyle. 2000. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr. Res. Rev. 13:79-106. https://doi.org/10.1079/095442200108729016
  12. Erba, D., M.C. Casiraghi, A. Ribas-Agusti, R. Caceres, O. Marfa, and M. Castellari. 2013. Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J. Food Comp. Anal. 31:245-251. https://doi.org/10.1016/j.jfca.2013.05.014
  13. Fernandez-Escobar, R., G. Beltran, M.A. Sanchez-Zamora, J. Garcia-Novelo, M.P. Aguilera, and M. Uceda. 2006. Olive oil quality decreases with nitrogen over-fertilization. Hortscience. 41:215-219.
  14. Galieni, A., C.D. Mattia, M.D. Gregorio, S. Speca, D. Mastrocola, M. Pisante, and F. Stagnari. 2015. Effects of nutrient deficiency and abiotic environmental stresses onyield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Sci. Hortic. 187:93-101. https://doi.org/10.1016/j.scienta.2015.02.036
  15. Hallmann, E. 2012. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 92:2840-2848. https://doi.org/10.1002/jsfa.5617
  16. Han, S.J., S.W. Kwon, S.H. Chu, and S.N. Ryu. 2012. A new rice variety 'Keunnunjami', with high concentrations of cyanidin 3-glucoside and giant embryo. Kor. J. Breed. Sci. 44:185-189.
  17. Hilbert, G., J.P. Soyer, C. Molot, J. Giraudon, S. Milin, and J.P. Gaudillere. 2003. Effects of nitrogen supply on must quality and anthocyanin accumulation in berries of cv. Merlot. Vitis. 42:69-76.
  18. Hochmuth, G.J., J.K. Brecht, and M.J. Bassett. 1999. Nitrogen fertilization to maximize carrot yield and quality on a sandy soil. Hortscience. 34:641-645.
  19. Jang, S.W., J.N. Lee, J.S. Kim, M.H. Cheon, M.H. Seo, M.G. Song, M.J. Um, H.D. Kim, and S.B. Ko. 2015. Breeding of anthocyanin expression and high yield of lettuce 'Misun' in cool season. Kor. J. Breed. Sci. 47:154-158. https://doi.org/10.9787/KJBS.2015.47.2.154
  20. Kim, D.Y., S.K. Kim, C. Chen, S. Kim, W.B. Chae, J.H. Kwak, S. Park, S.R. Cheong, and M.K. Yoon. 2013. Variation of anthocyanin content and estimation of anthocyanin content from colorimeter among strawberry accessions. Kor. J. Breed. Sci. 45:339-345. https://doi.org/10.9787/KJBS.2013.45.4.339
  21. Kim, H.R. and J.B. Ahn. 2014. Analysis of free amino acids and polyphenol compounds from lycopene variety of cherry tomatoes. Korean J. Cul. Res. 20:37-49.
  22. Kim, H.B., S.L. Kim, Y.S. Seok, S.H. Lee, Y.Y. Jo, H.Y. Kweon, and K.G. Lee. 2014. Quantitative analysis of rutin with mulberry leaves (I). J. Seric. Entomol. Sci. 52:52-58.
  23. Kim, H.K., J.H. Chun, and S.J. Kim. 2015. Method development and analysis of carotenoid compositions in various tomatoes. Korean J. Environ. Agric. 34:196-203. https://doi.org/10.5338/KJEA.2015.34.3.23
  24. Kopsell, D.A., D.E. Kopsell, and J. Curran-Celentano. 2007a. Carotenoid pigments in kale are influenced by nitrogen concentration and form. J. Sci. Food Agric. 87:900-907. https://doi.org/10.1002/jsfa.2807
  25. Kopsell, D.A., T.C. Barickman, C.E. Sams, and J.S. McElroy. 2007b. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 55:10628-10634. https://doi.org/10.1021/jf072793f
  26. Kumar, D. and S.I. Rizvi. 2012. Significance of vitamin C in human health and disease. Ann. Phytomed. 1:9-13.
  27. Lee, J.G., J.H. Kwak, Y.C. Um, S.G. Lee, Y.A. Jang, and C.S. Choi. 2012. Variation of glucosinolate contents among domestic broccoli (Brassica oleracea L. var. italica) accessions. Kor. J. Hort. Sci. Technol. 30:743-750.
  28. Lee, W.M., M.J. Kwon, L.S. Song, S. Kim, H.J. Lee, E.Y. Yang, H.S. Choi, Y.C. Huh, D.K. Park, and M.K. Yoon. 2014a. Screening of lycopene-rich germplasms using microplate method in watermelon (Citrullus Lanatus (thunb.) Matsum. & Nakai). Kor. J. Breed. Sci. 46:37-43. https://doi.org/10.9787/KJBS.2014.46.1.037
  29. Lee, M.J., Y.K. Kim, J.C. Park, M.J. Kim, J.N. Hyun, J.S. Choi, and K.H. Park. 2014b. Hull-less waxy barley (Hordeum vulgare L.) cultivar 'Boseokchal' with high anthocyanin content and purple lemma. Kor. J. Breed. Sci. 46:456-462. https://doi.org/10.9787/KJBS.2014.46.4.456
  30. Mogren, L.M., M.E. Olsson, and U.E. Gertsson. 2007. Quercetin content in stored onions (Allium cepa L.): effects of storage conditions, cultivar, lifting time and nitrogen fertiliser level. J. Sci. Food Agric. 87:1595-1602. https://doi.org/10.1002/jsfa.2904
  31. Moor, U., P. Poldma, T. Tonutare, K. Karp, M. Starast, and E. Vool. 2009. Effect of phosphite ferilization on growth, yield and fruit composition of strawberries. Sci. Hortic. 119:264-269. https://doi.org/10.1016/j.scienta.2008.08.005
  32. Mozafar, A. 1993. Nitrogen fertilizers and the amount of vitamin in plants: A review. J. Plant Nutr. 16:2479-2506. https://doi.org/10.1080/01904169309364698
  33. Mozafar, A. 1996. Decreasing the NO3 and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Food Hum Nutr. 49:155-162. https://doi.org/10.1007/BF01091973
  34. Nguyen, P.M. and E.D. Niemeyer. 2008. Effects of nitrogen fertilization on the phenolic composition and antioxidant properties of basil (Ocimum basilicum L.). J. Agric. Food Chem. 56:8685-8691. https://doi.org/10.1021/jf801485u
  35. Oh, S.D., S.Y. Park, S.M. Lee, K. Lee, S.I. Sohn, S.K. Park, and T.H. Ryu. 2015. Molecular biological characteristics and biosafety assessment for ${\beta}$-carotene biofortified transgenic rice. Kor. J. Breed. Sci. 47:29-38. https://doi.org/10.9787/KJBS.2015.47.1.029
  36. Oloyede, F.M., O.C. Adebooye, and E.M. Obuotor. 2014. Planting date and fertilizer affect antioxidants in pumpkin fruit. Sci. Hortic. 168:46-50. https://doi.org/10.1016/j.scienta.2014.01.012
  37. Omirou, M.D., K.K. Papadopoulou, I. Papastylianou, M. Constantinou, D.G. Karpouzas, I. Asimakopoulos, and C. Ehaliotis. 2009. Impact of nitrogen and sulfur ferilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J. Agric. Food Chem. 57:9408-9417. https://doi.org/10.1021/jf901440n
  38. Qin, Y., S.J. Kweon, Y.S. Chung, S.H. Ha, K.S. Shin, M.H. Lim, T.R. Kwon, H.S. Cho, S.K. Park, and H.J. Woo. 2015. Selection of ${\beta}$-carotene enhanced transgenic soybean containing single-copy transgene and analysis of integration sites. Kor. J. Breed. Sci. 47:111-117. https://doi.org/10.9787/KJBS.2015.47.2.111
  39. Reif, C., E. Arrigoni, R. Neuweiler, D. Baumgartner, L. Nystrom, and R.F. Hurrell. 2012. Effects of sulfur and nitrogen fertilization on the content of nutritionally relevant carotenoids in spinach (Spinacia oleracea). J. Agric. Food Chem. 60:5819-5824. https://doi.org/10.1021/jf301114p
  40. Rosen, C.J., V.A. Fritz, G.M. Gardner, S.S. Hecht, S.G. Carmella, and P.M. Kenney. 2005. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. Hort. Science. 40:1493-1498.
  41. Shin, J.H., H.W. Kim, M.K. Lee, G.H. Jang, S.H. Lee, H.H. Jang, Y.J. Hwang, K.Y. Park, B.H. Song, and J.B. Kim. 2015. Effect of thermal treatments on flavonoid contents in domestic soybeans. Korean J. Environ. Agric. 34:105-110. https://doi.org/10.5338/KJEA.2015.34.2.21
  42. Simonne, A.H., J.M. Fuzere, E. Simonne, R.C. Hochmuth, and M.R. Marshall. 2007. Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. J. Plant Nutr. 30:927-935. https://doi.org/10.1080/15226510701375465
  43. Singh, D.P., J. Beloy, J.K. McInerney, and L. Day. 2012. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 132: 1161-1170. https://doi.org/10.1016/j.foodchem.2011.11.045
  44. Sinkovic, L., L. Demsar, D. Znidarcic, R. Vidrih, J. Hribar, and D. Treutter. 2015. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem. 166:507-513. https://doi.org/10.1016/j.foodchem.2014.06.024
  45. Soubeyrand, E., C. Basteau, G. Hillbert, C. van Leeuwen, S. Delrot, and E. Gomes. 2014. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries. Phytochemistry. 103:38-49. https://doi.org/10.1016/j.phytochem.2014.03.024
  46. Stefanelli, D., I. Goodwin, and R. Jones. 2010. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 43:1833-1843. https://doi.org/10.1016/j.foodres.2010.04.022
  47. Stumpf, B., F. Yan, and B. Honermeier. 2015. Nitrogen ferilization and maturity influence the phenolic concentration of wheat grain (Triticum aestivum). J. Plant Nutr. Soil Sci. 178:118-125. https://doi.org/10.1002/jpln.201400139
  48. Tavarini, S., C. Sgherri, A.M. Ranieri, and L.G. Angelini. 2015. Effect of nitrogen fertilization and harvest time on steviol glycosides, flavonoid composition, and antioxidant properties in Stevia rebaudiana Bertoni. J. Agric. Food Chem. 63:7041-7050. https://doi.org/10.1021/acs.jafc.5b02147
  49. Toor, R.K., G.P. Savage, and A. Heeb. 2006. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Comp. Anal. 19:20-27. https://doi.org/10.1016/j.jfca.2005.03.003
  50. Treutter, D. 2010. Managing phenol contents in crop plants by phytochemical farming and breeding - Visions and constraints. Int. J. Mol. Sci. 11:807-857. https://doi.org/10.3390/ijms11030807
  51. Verma, S., A. Sharma, R. Kumar, C. Kaur, A. Arora, R. Shah, and L. Nain. 2015. Improvement of antioxidant and defense properties of tomato (var. Pusa Rohini) by application of bioaugmented compost. Saudi J. Biol. Sci. 22:256-264. https://doi.org/10.1016/j.sjbs.2014.11.003
  52. Xu, C.J., R.F. Guo, H.Z. Yan, J. Yuan, B. Sun, G.F. Yuan, and Q.M. Wang. 2010. Effect of nitrogen fertilization on ascorbic acid, glucoraphanin content and quinone reductase activity in broccoli floret and stem. J. Food Agric. Environ. 8:179-184.

피인용 문헌

  1. Effects of Water Deficit and UV-B Radiation on Accumulation of Functional Metabolites in Crops: A Review vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.409