DOI QR코드

DOI QR Code

The Interaction of Phenylthiourea Derivatives as Catechol Oxidase Inhibitors by Molecular Mechanics Simulation

페닐티오우레아 유도체와 카테콜 산화효소와의 상호작용에 대한 분자역학적 모의실험

  • Park, Kyung Lae (Department of Pharmaceutics, College of Pharmacy, Chungnam National University)
  • 박경래 (충남대학교 약학대학 제약학과)
  • Received : 2016.02.18
  • Accepted : 2016.03.16
  • Published : 2016.04.30

Abstract

N-Phenylthiourea derivatives and catechol oxidase receptor complex was studied using molecular mechanics method. The starting structure was adopted from the protein databank and the calculation of energy minimization and molecular dynamics was performed with AMBER package. The molecular dynamics showed that the simulation time span of 20 ns was long enough to observe the interaction profile and stationary ligand-receptor configuration in the complex. The conformation of the ligand was related to the interaction to the receptor and the efficacy was also interpreted in this context.

Keywords

References

  1. Karlin, K. D. : Metalloenzymes, structural motifs, and inorganic models. Science 261, 701 (1993). https://doi.org/10.1126/science.7688141
  2. Kim, Y. J. and Uyama, H. : Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62, 1707 (2005). https://doi.org/10.1007/s00018-005-5054-y
  3. Ando, H., Kondoh, H., Ichihashi, M. and Hearing, V. J. : Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J. Inves. Dermatol. 127, 751 (2007). https://doi.org/10.1038/sj.jid.5700683
  4. Klabunde, T., Eicken, C., Sacchettini, J. C. and Krebs, B. : Crystal structure of a plant catechol oxidase containing a dicopper center. Nat. Struct. Biol. 5, 1084 (1998). https://doi.org/10.1038/4193
  5. Thanigaimalai, P., Hoang, T. A. L., Lee, K. C., Bang, S. C., Sharma, V. K., Yun, C. Y., Roh, E., Hwang, B. Y., Kim, Y. and Jung, S. H. : Design and synthesis of novel hydroxyalkylaminomethylchromones for their IL-5 inhibitory activity. Bioorg. Med. Chem. 18, 4625 (2010). https://doi.org/10.1016/j.bmc.2010.05.028
  6. Case, D. A., Darden, T. A., Cheatham III, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., Roberts, B., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kollosvary, I., Wong, K. F., Paesani, F., Vanicek, J., Liu, J., Wu, X., Brozell, S. R., Steinbrecher, T., Goehlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M.-J., Cui, G., Roe, D. R., Mathews, D. H., Seetin, M. G., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A. and Kollman, P. A. : AMBER12. University of California, San Francisco (2012).
  7. Wang, J., Cieplak, P. and Kollman, P. A. : How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21, 1049 (2000). https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  8. Park, K. L. : Modeling partial atomic charge of organic molecule and mutated amino acid in a protein-ligand complex for molecular mechanics simulation. Bull. Korean Chem. Soc. 34, 299 (2013). https://doi.org/10.5012/bkcs.2013.34.1.299
  9. Jakalian, A., Bush, B. L., Jack, D. B. and Bayly, C. I. : Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132 (2000). https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
  10. Wang, J., Wolf, R. M., Caldwell, J. W., Kollamn, P. A. and Case, D. A. : Development and testing of a general amber force field. J. Comput. Chem. 25, 1157 (2004). https://doi.org/10.1002/jcc.20035
  11. van Gunsteren, W. F., Berendsen, H. J. C., Colonna, F., Perahia, D., Hollenberg, J. P. and Lellouch, D. : On searching neighbors in computer simulations of macromolecular systems. J. Comput. Chem. 5, 272 (1984). https://doi.org/10.1002/jcc.540050311
  12. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. and Klein, M. L. : Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869
  13. van Gunsteren, W. F. and Berendsen, H. J. C. : Computer simulation as a tool for tracing the conformational differences between proteins in solution and in the crystalline state. J. Mol. Biol. 176, 559 (1984). https://doi.org/10.1016/0022-2836(84)90177-3
  14. van Gunsteren, W. F. and Karplus, M. : A method for constrained energy minimization of macromolecules. J. Comput. Chem. 1, 266 (1980). https://doi.org/10.1002/jcc.540010308
  15. Fletcher, R. and Reeves, C. M. : Function minimization by conjugate gradients. Comput. J. 7, 149 (1964). https://doi.org/10.1093/comjnl/7.2.149
  16. van Gunsteren, W. F. : Computer Simulation of Biomolecular Systems (Ed.: van Gunsteren, W. F., Weiner, P. K. and Wilkinson, A. J.), ESCOM, Leiden, 1993, Vol. 2, p. 8.
  17. Ryckaert, J. P., Ciccotti, G. and Berendsen, H. J. C. : Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327 (1977). https://doi.org/10.1016/0021-9991(77)90098-5
  18. Lennard-Jones, J. E. : On the determination of molecular fields. Proc. R. Soc. Lond. 106, 463 (1924). https://doi.org/10.1098/rspa.1924.0082
  19. Ramachandran, G. N., Ramakrishnan, C. and Sasisekharan, V. : Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95 (1963). https://doi.org/10.1016/S0022-2836(63)80023-6