DOI QR코드

DOI QR Code

Effect of Baicalin on the Ex vivo Production of Cytokines in Pristane-Induced Lupus Mice

프리스탄 유도한 루푸스 생쥐에서 사이토카인 Ex vivo 생산에 미치는 Baicalin의 효과

  • 채병숙 (우석대학교 약학대학 약학과)
  • Received : 2015.12.23
  • Accepted : 2016.01.04
  • Published : 2016.02.29

Abstract

Systemic lupus erythematosus (SLE) is characterized by dysregulatory production of proinflammatory cytokines and helper T (Th) cytokine-dependent autoantibody production. This study aims to investigate the protective effect of baicalin on the dysregulatory production of proinflammatory cytokines and Th cytokines in pristane-induced lupus mice. Mice were received i.p. a single injection of 0.5 ml of pristane, and then, later about 3 months, were used as a pristane-induced lupus model. The pristane-induced lupus mice were administrated orally with baicalin 50 mg/kg once in a day for 10 days. Immune cells obtained from the pristane-primed lupus control group (lupus control) and baicalin-treated pristaneprimed lupus mouse group (BAC lupus) were cultured for 24 h or 36 h with/without mitogens. These results demonstrated that LPS-induced production of macrophage and splenic TNF-${\alpha}$ and Con A-induced production of thymic IFN-${\gamma}$ were attenuated in BAC lupus compared to lupus control, while LPS-stimulated production of macrophage IL-10, Con A-stimulated production of splenic IL-10 and, $PGE_2$-reduced production of splenic IFN-${\gamma}$ enhanced. Therefore, these findings suggest that baicalin may protect from autoimmunity and disease activity in lupus via modulatory effect of proinflammatory cytokine overproduction and Th cytokine imbalance.

Keywords

References

  1. Nagy, G., Koncz, A. and Perl, A. : T- and B-cell abnormalities in systemic lupus erythematosus. Crit. Rev. Immunol. 25, 123 (2005). https://doi.org/10.1615/CritRevImmunol.v25.i2.30
  2. Takeuchi, T., Tsuzaka, K., Abe, T., Yoshimoto, K., Shiraishi, K., Kameda, H. and Amano, K. : T cell abnormalities in systemic lupus erythematosus. Autoimmunity 38, 339 (2005). https://doi.org/10.1080/08916930500123983
  3. Chae, B. S. and Shin, T. Y. : Immunoregulatory abnormalities of T cells and hyperreactivity of B cells in the in vitro immune response in pristane-induced lupus mice. Arch. Pharm. Res. 30, 191 (2007). https://doi.org/10.1007/BF02977694
  4. Xu, L., Zhang, L., Yi, Y., Kang, H. K. and Datta, S. K. : Human lupus T cells resist inactivation and escape death by upregulating COX-2. Nat. Med. 10, 411 (2004). https://doi.org/10.1038/nm1005
  5. Takeno, M., Nagafuchi, H., Kaneko, S., Wakisaka, S., Oneda, K., Takeba, Y., Yamashita, N., Suzuki, N., Kaneoka, H. and Sakane, T. : Autoreactive T cell clones from patients with systemic lupus erythematosus support polyclonal autoantibody production. J. Immunol. 158, 3529 (1997).
  6. Reininger, L., Santiago, M. L., Takahashi, S., Fossati, L. and Izui, S. : T helper cell subsets in the pathogenesis of systemic lupus erythematosus. Ann. Med. Interne. (Paris) 147, 467 (1996).
  7. Ishikawa, S., Akakura, S., Abe, M., Terashima, K., Chijiiwa, K., Nishimura, H., Hirose, S. and Shirai, T. : A subset of CD4+ T cells expressing early activation antigen CD69 in murine lupus: possible abnormal regulatory role for cytokine imbalance. J. Immunol. 161, 1267 (1998).
  8. Portales-Perez, D., Gonzalez-Amaro, R., Abud-Mendoza, C. and Sanchez-Armass, S. : Abnormalities in CD69 expression, cytosolic pH and $Ca^{2+}$ during activation of lymphocytes from patients with systemic lupus erythematosus. Lupus 6, 48 (1997). https://doi.org/10.1177/096120339700600107
  9. Crispin, J. C., Martinez, A., de Pablo, P., Velasquillo, C. and Alcocer-Varela, J. : Participation of the CD69 antigen in the Tcell activation process of patients with systemic lupus erythematosus. Scand. J. Immunol. 48, 196 (1998). https://doi.org/10.1046/j.1365-3083.1998.00366.x
  10. Jordan, N. and D'Cruz, D. : Key issues in the management of patients with systemic lupus erythematosus: latest developments and clinical implications. Ther. Adv. Musculoskelet Dis. 7, 234 (2015). https://doi.org/10.1177/1759720X15601805
  11. Steiman, A. J., Gladman, D. D., Ibanez, D., Noamani, B., Landolt-Marticorena, C., Urowitz, M. B. and Wither, J. E. : Lack of Interferon and proinflammatory cyto/chemokines in serologically active clinically quiescent systemic lupus erythematosus. J. Rheumatol. 42, 2318 (2015). https://doi.org/10.3899/jrheum.150040
  12. Aringer, M. and Smolen, J. S. : SLE - Complex cytokine effects in a complex autoimmune disease: tumor necrosis factor in systemic lupus erythematosus. Arthritis Res. Ther. 5, 172 (2003).
  13. Chun, H. Y., Chung, J. W., Kim, H. A., Yun, J. M., Jeon, J. Y., Ye, Y. M., Kim, S. H., Park, H. S. and Suh, C. H. : Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J. Clin. Immunol. 27, 461 (2007). https://doi.org/10.1007/s10875-007-9104-0
  14. Dean, G. S., Tirrell-Price, J., Crawley, E. and Isenberg, D. A. : Cytokines and systemic lupus erythematosus. Ann. Rheum. Dis. 59, 243 (2000). https://doi.org/10.1136/ard.59.4.243
  15. Haas, C., Ryffel, B. and Le Hir, M. : IFN-gamma receptor deletion prevents autoantibody production and glomerulonephritis in lupus-prone (NZB x NZW)F1 mice. J. Immunol. 160, 3713 (1998).
  16. Liang, B., Gardner, D. B., Griswold, D. E., Bugelski, P. J. and Song, X. Y. : Anti-interleukin-6 monoclonal antibody inhibits autoimmune responses in a murine model of systemic lupus erythematosus. Immunology 119, 296 (2006). https://doi.org/10.1111/j.1365-2567.2006.02433.x
  17. Richards, H. B., Satoh, M., Shaw, M., Libert, C., Poli, V. and Reeves, W. H. : Interleukin 6 dependence of anti-DNA antibody production: evidence for two pathways of autoantibody formation in pristane-induced lupus. J. Exp. Med. 188, 985 (1998). https://doi.org/10.1084/jem.188.5.985
  18. Beebe, A. M., Cuab, D. J. and de Waal Malefyt, R. : The role of interleukin-10 in autoimmune disease: systemic lupus erythematosus (SLE) and multiple sclerosis (MS). Cytokine & Growth Factor Reviews 13, 403 (2002). https://doi.org/10.1016/S1359-6101(02)00025-4
  19. Tsai, C. Y., Wu, T. H., Tsai, S. T., Chen, K. H., Thajeb, P., Lin, W. M., Yu, H. S. and Yu, C.L. : Cerebrospinal fluid interleukin- 6, prostaglandin $E_2$ and autoantibodies in patients with neuropsychiatric systemic lupus erythematosus and central nervous system infections. Scand. J. Rheumatol. 23, 57 (1994). https://doi.org/10.3109/03009749409103028
  20. Chae, B. S., Shin, T. Y., Kim, D. K., Eun, J. S., Leem, J. Y. and Yang, J. H. : Prostaglandin $E_2$-mediated dysregulation of proinflammatory cytokine production in pristane-induced lupus mice. Arch. Pharm. Res. 31, 503 (2008). https://doi.org/10.1007/s12272-001-1185-6
  21. Li-Weber, M. : New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat. Rev. 35, 57 (2009). https://doi.org/10.1016/j.ctrv.2008.09.005
  22. Gao, Z., Huang, K., Yang, X. and Xu, H. : Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta. 1472, 643 (1999). https://doi.org/10.1016/S0304-4165(99)00152-X
  23. Wang, H. and Liu, D. : Baicalin inhibits high-mobility group box 1 release and improves survival in experimental sepsis. Shock 41, 324 (2014). https://doi.org/10.1097/SHK.0000000000000122
  24. Zhu, J., Wang, J., Sheng, Y., Zou, Y., Bo, L., Wang, F., Lou, J., Fan, X., Bao, R., Wu, Y., Chen, F., Deng, X. and Li, J. : Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis. PLoS One 7, e35523 (2012). https://doi.org/10.1371/journal.pone.0035523
  25. Liu, L. L., Gong, L. K., Wang, H., Xiao, Y., Wu, X. F., Zhang, Y. H., Xue, X., Qi, X. M. and Ren, J. : Baicalin inhibits macrophage activation by lipopolysaccharide and protects mice from endotoxin shock. Biochem. Pharmacol. 75, 914 (2008). https://doi.org/10.1016/j.bcp.2007.10.009
  26. Xu, J., Huang, R., Yang, Y. J., Jin, S. J. and Zhang, J. F. : Effects of baicalin on apoptosis in rats with autoimmune encephalomyelitis. Zhongguo Dang Dai Er Ke Za Zhi 13, 665 (2011).
  27. Yang, J., Yang, X. and Li, M. : Baicalin, a natural compound, promotes regulatory T cell differentiation. BMC Complement Altern. Med. 12, 64 (2012).
  28. Shacter, E., Arzadon, G. K. and Williams, J. : Elevation of interleukin-6 in response to a chronic inflammatory stimulus in mice: inhibition by indomethacin. Blood 80, 194 (1992).
  29. Chae, B. S. : Baicalin amelirates dysimmunoregulation in pristane-induced lupus mice: production of IL-6 and PGE2 and activation of T cells. Nat. Prod. Sci. 17, 354 (2011).
  30. Svenungsson, E., Fei, G. Z., Jensen-Urstad, K., de Faire, U., Hamsten, A. and Frostegard, J. : TNF-alpha: a link between hypertriglyceridaemia and inflammation in SLE patients with cardiovascular disease. Lupus 12, 454 (2003). https://doi.org/10.1191/0961203303lu412oa
  31. Qu, H., Bian, W. and Xu, Y. : A novel NF-${\kappa}B$ inhibitor, DHMEQ, ameliorates pristane-induced lupus in mice. Exp. Ther. Med. 8, 100 (2014). https://doi.org/10.3892/etm.2014.1718
  32. Miyagaki, T., Fujimoto, M. and Sato, S. : Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research. Int. Immunol. 27, 495 (2015). https://doi.org/10.1093/intimm/dxv026
  33. Sim, J. H., Kim, H. R., Chang, S. H., Kim, I. J., Lipsky, P. E. and Lee, J. : Autoregulatory function of interleukin-10-producing pre-naïve B cells is defective in systemic lupus erythematosus. Arthritis Res. Ther. 17, 190 (2015). https://doi.org/10.1186/s13075-015-0687-1
  34. Kalinski, P. : Regulation of immune responses by prostaglandin $E_2$. J. Immunol. 188, 21 (2012). https://doi.org/10.4049/jimmunol.1101029
  35. Hinson., R. M., Williams, J. A. and Shacter, E. : Elevated interleukin 6 is induced by prostaglandin $E_2$ in a murine model of inflammation: possible role of cyclooxygenase-2. Proc. Natl. Acad. Sci. U S A 93, 4885 (1996). https://doi.org/10.1073/pnas.93.10.4885
  36. Mene, P., Pecci, G., Cinotti, G. A., Pugliese, G., Pricci, F. and Pugliese, F. : Eicosanoid synthesis in peripheral blood monocytes: a of disease activity in lupus nephritis. Am. J. Kidney Dis. 32, 778 (1998). https://doi.org/10.1016/S0272-6386(98)70133-7
  37. Dillon, A. M., Stein, H. B. and English, R. A. : Splenic atrophy in systemic lupus erythematosus. Ann. Intern. Med. 96, 40 (1982). https://doi.org/10.7326/0003-4819-96-1-40
  38. Piliero, P. and Furie, R. : Functional asplenia in systemic lupus erythematosus. Semin. Arthritis Rheum. 20, 185 (1990). https://doi.org/10.1016/0049-0172(90)90059-O
  39. Yang, X., Sun, B., Wang, H., Yin, C., Wang, X. and Ji, X. : Increased serum IL-10 in lupus patients promotes apoptosis of T cell subsets via the caspase 8 pathway initiated by Fas signaling. J. Biomed. Res. 29, 232 (2015).
  40. Panarese, A., D'Andrea, V., Pironi, D. and Filippini, A. : Thymectomy and systemic lupus erythematosus (SLE). Ann. Ital. Chir. 85, 617 (2014).
  41. Gottschalk, T. A., Tsantikos, E. and Hibbs, M. L. : Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus. Front. Immunol. 6, 550 (2015).
  42. Mathian, A., Hie, M., Cohen-Aubart, F. and Amoura, Z. : Targeting interferons in systemic lupus erythematosus: current and future prospects. Drugs 75, 835 (2015). https://doi.org/10.1007/s40265-015-0394-x
  43. Balomenos, D., Rumold, R. and Theofilopoulos, A. N. : Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J. Clin. Invest. 101, 364 (1998). https://doi.org/10.1172/JCI750
  44. Harigai, M., Kawamoto, M., Hara, M., Kubota, T., Kamatani, N. and Miyasaka, N. : Excessive production of IFN-gamma in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J. Immunol. 181, 2211 (2008). https://doi.org/10.4049/jimmunol.181.3.2211