DOI QR코드

DOI QR Code

Molecular Characterization of Quinolone Antibiotic Resistance in Escherichia coli Isolated from Retail Meat in Seoul

서울시내 시판 식육에서 분리한 대장균의 퀴놀론계 항생제 내성 기전 분석

  • Received : 2015.10.01
  • Accepted : 2015.11.23
  • Published : 2016.02.29

Abstract

The aim of this study was to investigate the prevalence of quinolone resistant E. coli from retail meat and to characterize the resistant determinants. Determination of minimum inhibitory concentration, the sequence analysis of gyrA, gyrB, parC, and parE quinolone resistance determining regions (QRDR), the presences of plasmid mediated quinolone resistance (PMQR) and the expression of efflux pump genes were investigated. Of the total 277 retail meat samples, 67 coli form bacteria were isolated. 15 of 67 isolates showed nalidixic acid resistance and 7 of 15 nalidixic acid resistant isolates were also resistant to ciprofloxacin, moxifloxacin and levofloxacin. 11 of 15 nalidixic acid resistant strains were isolated from chicken, 2 of 15 were isolated from beef and 2 of 15 were isolated from pork samples. 11 of 15 nalidixic acid resistant strains have single mutation at codon 87 (D87N or D87G) in gyrA, 2 of 11 gyrA mutants have double mutations at codon 86 and 87 (L86A and L87I) in parC with mutations at codon 434+445+465 or 429 in gyrB. 2 of 15 resistant isolates harbored qnrS, a PMQR determinant. Over expression of the acrB gene, efflux pump gene (3.93~16.53 fold), was observed in 10 of 15 resistant isolates.

Keywords

References

  1. EMA, 2012. Sales of veterinary antimicrobial agents in 19 EU/EEA countries in 2010 (Second ESVAC report). European medicines agency. London, United Kingdom.
  2. Lim, S. K., Lee, J. E., Lee, H. S., Nam, H. M., Moon, D. C., Jang, G. C., Park, Y. J., Jung, Y. G., Jung, S. C. and Wee, S. H. : Trends in antimicrobial sales for livestock and fisheries in Korea during 2003-2012. Korean J. Vet. Res. 54, 81 (2014). https://doi.org/10.14405/kjvr.2014.54.2.81
  3. Aaerestrup, F. M. : Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals. Int. J. Antimicrob. Agents. 12, 279 (1999). https://doi.org/10.1016/S0924-8579(99)90059-6
  4. Jacoby, G. A. : Mechanism of resistance to quinolones. Clin. Infec. Dis. 41, S120 (2005). https://doi.org/10.1086/428052
  5. Hernandez-Alles, S., Benedi, V. J., Martinez-Martinez, L., Pascual, A., Aguilar, A., Tomas, J. M. and Alberti, S. : Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob. Agents Chemother. 43, 937 (1999).
  6. Martinez-Martinez, L., Pascual, A., Conejo Mdel, C., Garcia, I., Joyanes, P., Domenech-Sanchez, A. and Benedi, V. J. : Energydependent accumulation of norfloxacin and porin expression in clinical isolates of Klebsiella pneumoniae and relationship to extended-spectrum beta-lactamase production. Antimicrob. Agents Chemother. 46, 3926 (2002). https://doi.org/10.1128/AAC.46.12.3926-3932.2002
  7. Rodriguez-Martinez, J. M., Cano, M. E., Velasco, C., Martinez- Martinez, L. and Pascual, A. : Plasmid-mediated quinolone resistance: an update. J. Infect. Chemother. 17, 149 (2011). https://doi.org/10.1007/s10156-010-0120-2
  8. Poirel, L., Cattoir, V. and Nordmann, P. : Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front. Microbiol. 3, 24 (2013).
  9. Strahilevitz, J., Jacoby, G. A., Hooper, D. C. and Robicsek, A. : Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664 (2009). https://doi.org/10.1128/CMR.00016-09
  10. Chen, Y. T., Liao, T. L., Liu, Y. M., Lauderdale, T. L., Yan J. J. and Tsai, S. F. : Mobilization of qnrB2 and ISCR1 in plasmid. Antimicrob. Agents Chemother. 53, 1235 (2009). https://doi.org/10.1128/AAC.00970-08
  11. Komp Lindgren, P., Karlsson, A. and Hughes, D. : Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract. Antimicorb. Agents Chemother. 47, 3222 (2003). https://doi.org/10.1128/AAC.47.10.3222-3232.2003
  12. Mammeri, H., Van De Loo, M., Poirel, L., Martinez-Martinez, L. and Nordmann, P. : Emergence of plasmid-mediated quinolone resistance in Escherichia coli in Europe. Antimicrob. Agents Chemother. 49, 71 (2005). https://doi.org/10.1128/AAC.49.1.71-76.2005
  13. Jung, D. H., Lee, M. Y., Kim, J. M., Lee, J. C., Cho, D. T. and Lee, Y. H. : Isolation of quinolone-resistant Escherichia coli found in major rivers in Korea. J. Microbiol. 44, 680 (2006).
  14. Zurfluh, K., Abgottspon, H., Hachler, H., Nuesch-Inderbinen, M. and Stephan, R. : Quinolone resistance mechanisms among extended-spectrum beta-lactamase (ESBL) producing Escherichia coli isolated from rivers and lakes in Switzerland. PLoS ONE 9, e95864 (2014). https://doi.org/10.1371/journal.pone.0095864
  15. Clinical and Laboratory Standards Institute (CLSI), Performance standards for antimicrobial susceptibility testing, 19th Informational Supplement. 2009. Document M100-S19, CLSI, Wayne, PA.
  16. Liu, X., Boothe, D. M., Thungrat, K. and Aly, S. : Mechanisms accounting for fluoroquinolone multidrug resistance Escherichia coli isolated from companion animals. Vet. Microbiol. 161, 159 (2012). https://doi.org/10.1016/j.vetmic.2012.07.019
  17. Karczmarczyk, M., Martins, M., Quinn, T., Leonard, N. and Fanning, S. : Mechanisms of fluoroquinolone resistance in Escherichia coli isolates from food-producing animals. Appl. Environ. Microbiol. 77, 7113 (2011). https://doi.org/10.1128/AEM.00600-11
  18. Viveiros, M., Dupont, M., Rodrigues, L., Couto, I., Davin-Regli, A., Martins, M., Pages, J. M. and Amaral, L. : Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One. 2, e365 (2007). https://doi.org/10.1371/journal.pone.0000365
  19. Oh, J. Y., Kwon, Y. K., Tamang, M. D., Jang, H. K., Jeong, O. M., Lee, H. S. and Kang, M. S. : Plasmid mediated quinolone resistance in Escherichia coli isolated from wild birds and chickens in South Korea. Microbial. Drug Resistance (Epub ahead of print) DOI:10.1089/mdr.2015.0090 (2015).
  20. Kim, H. T., Jung, K. T., Kim, G. H. and Ryu, B. S. : Study on antimicrobial resistance of Escherichia coli isolated from domestic meat (beef, pork, chicken and duck) on sale (2009- 2010). The Ann. Rep. Busan Meterop. City Institute of Health and Environment 20, 1074 (2010).
  21. Vila, J., Ruiz, J., Goni, P. and De Anta, M. Y. : Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40, 491 (1996).
  22. Komp Lindgren, P., Marcusson, L. L., Sandvang, D., Frimodt- Moller, N and Hughes, D. : Biological cost of single and multiple norfloxacin resistance mutation in Escherichia coli implicated in urinary tract infection. Antimicrob. Agents Chemother. 49, 2342 (2005).
  23. Tamang, M. D., Nam, H. M., Chae, M. H., Kim, S. R., Gurung, M., Jang, G. C., Jung, S. C. and Lim, S. K. : Prevalence of plasmid mediated quinolone resistance determinants among Escherichia coli isolated from food animals in Korea. Foodborne Patho. Dis. 9, 1057 (2012). https://doi.org/10.1089/fpd.2012.1225
  24. Yang, T., Zeng, Z., Rao, L., Chen, X., He, D., Lv, L., Wang, J., Zeng, L., Feng, M. and Liu, J. H. : The association between occurrence of plasmid-mediated quinolone resistance and ciprofloxacin resistance in Escherichia coli isolates of different origins. Vet. Microbiol. 170, 89 (2014). https://doi.org/10.1016/j.vetmic.2014.01.019
  25. Mazzariol, A., Tokue, Y., Kanegawa, T. M., Cornaglia, G. and Nikaido, H. : High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein acrA. Antimicrob. Agents Chemother. 44, 3441 (2000). https://doi.org/10.1128/AAC.44.12.3441-3443.2000
  26. Yang, S., Clayton, S. R. and Zechiedrich, E. L. : Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother. 51, 545 (2003). https://doi.org/10.1093/jac/dkg126
  27. Yasufuku, T., Shigemura, K., Shirakawa, T., Matsumoto, M., Nakano, Y., Tanaka, K., Arakawa, S., Kinoshita, S., Kawabata, M. and Fujisawa, M. : Correlation of overexpression of efflux pump genes with antibiotic resistance in Escherichia coli strains clinically isolated from urinary tract infection patients. J. Clin. Microbiol. 49, 189 (2011). https://doi.org/10.1128/JCM.00827-10
  28. Lim, S. K. : Clinically important antimicrobials. J. Kor. Vet. Med. Assoc. 48, 603 (2012).
  29. Lim, S. K. : Veterinary clinically important antimicrobials. J. Kor. Vet. Med. Assoc. 48, 662 (2012).
  30. Giraud, E., Brisabois, A., Martel, J. L. and Chaslus-Dancla, E. : Comparative studies of mutations in animal isolates and experimental in vitro- and in vivo-selected mutants of Salmonella spp. suggest a counter selection of highly fluoroquinolone-resistant strains in the field. Antimicrob. Agents Chemother. 43, 2131 (1999).
  31. Jacoby, G. A., Gacharna, N., Black, T. A., Miller, G. H. and Hooper, D. C. : Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob. Agents Chemother. 53, 1665 (2009). https://doi.org/10.1128/AAC.01447-08
  32. Kim, H. B., Park, C. H., Kim, C. J., Jacoby, G. A. and Hooper, D. C. : Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53, 639 (2009). https://doi.org/10.1128/AAC.01051-08

Cited by

  1. 임상검체와 가축으로부터 분리된 대장균을 대상으로 Quinolone계 항균제 내성인자 분석 vol.50, pp.4, 2018, https://doi.org/10.15324/kjcls.2018.50.4.422