DOI QR코드

DOI QR Code

Comparison of Biexponential and Monoexponential Model of Diffusion-Weighted Imaging for Distinguishing between Common Renal Cell Carcinoma and Fat Poor Angiomyolipoma

  • Ding, Yuqin (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Zeng, Mengsu (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Rao, Shengxiang (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Chen, Caizhong (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Fu, Caixia (Siemens Shenzhen Magnetic Resonance Ltd.) ;
  • Zhou, Jianjun (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging)
  • Received : 2015.10.31
  • Accepted : 2016.06.26
  • Published : 2016.11.01

Abstract

Objective: To compare the diagnostic accuracy of intravoxel incoherent motion (IVIM)-derived parameters and apparent diffusion coefficient (ADC) in distinguishing between renal cell carcinoma (RCC) and fat poor angiomyolipoma (AML). Materials and Methods: Eighty-three patients with pathologically confirmed renal tumors were included in the study. All patients underwent renal 1.5T MRI, including IVIM protocol with 8 b values ($0-800s/mm^2$). The ADC, diffusion coefficient (D), pseudodiffusion coefficient ($D^*$), and perfusion fraction (f) were calculated. One-way ANOVA was used for comparing ADC and IVIM-derived parameters among clear cell RCC (ccRCC), non-ccRCC and fat poor AML. The diagnostic performance of these parameters was evaluated by using receiver operating characteristic (ROC) analysis. Results: The ADC were significantly greater in ccRCCs than that of non-ccRCCs and fat poor AMLs (each p < 0.010, respectively). The D and $D^*$ among the three groups were significantly different (all p < 0.050). The f of non-ccRCCs were less than that of ccRCCs and fat poor AMLs (each p < 0.050, respectively). In ROC analysis, ADC and D showed similar area under the ROC curve (AUC) values (AUC = 0.955 and 0.964, respectively, p = 0.589) in distinguishing between ccRCCs and fat poor AMLs. The combination of $D>0.97{\times}10^{-3}mm^2/s$, $D^*<28.03{\times}10^{-3}mm^2/s$, and f < 13.61% maximized the diagnostic sensitivity for distinguishing non-ccRCCs from fat poor AMLs. The final estimates of AUC (95% confidence interval), sensitivity, specificity, positive predictive value, negative predictive value and accuracy for the entire cohort were 0.875 (0.719-0.962), 100% (23/23), 75% (9/12), 88.5% (23/26), 100% (9/9), and 91.4% (32/35), respectively. Conclusion: The ADC and D showed similar diagnostic accuracy in distinguishing between ccRCCs and fat poor AMLs. The IVIM-derived parameters were better than ADC in discriminating non-ccRCCs from fat poor AMLs.

Keywords

References

  1. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, et al. The Heidelberg classification of renal cell tumours. J Pathol 1997;183:131-133 https://doi.org/10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G
  2. Hollingsworth JM, Miller DC, Daignault S, Hollenbeck BK. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst 2006;98:1331-1334 https://doi.org/10.1093/jnci/djj362
  3. Karaosmanoglu AD, Onur MR, Shirkhoda A, Ozmen M, Hahn PF. Unusual malignant solid neoplasms of the kidney: cross-sectional imaging findings. Korean J Radiol 2015;16:853-859 https://doi.org/10.3348/kjr.2015.16.4.853
  4. Woo S, Cho JY. Imaging findings of common benign renal tumors in the era of small renal masses: differential diagnosis from small renal cell carcinoma: current status and future perspectives. Korean J Radiol 2015;16:99-113 https://doi.org/10.3348/kjr.2015.16.1.99
  5. Milner J, McNeil B, Alioto J, Proud K, Rubinas T, Picken M, et al. Fat poor renal angiomyolipoma: patient, computerized tomography and histological findings. J Urol 2006;176:905-909 https://doi.org/10.1016/j.juro.2006.04.016
  6. Fujii Y, Komai Y, Saito K, Iimura Y, Yonese J, Kawakami S, et al. Incidence of benign pathologic lesions at partial nephrectomy for presumed RCC renal masses: Japanese dual-center experience with 176 consecutive patients. Urology 2008;72:598-602 https://doi.org/10.1016/j.urology.2008.04.054
  7. Halpenny D, Snow A, McNeill G, Torreggiani WC. The radiological diagnosis and treatment of renal angiomyolipoma-current status. Clin Radiol 2010;65:99-108 https://doi.org/10.1016/j.crad.2009.09.014
  8. Jinzaki M, Silverman SG, Akita H, Nagashima Y, Mikami S, Oya M. Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging 2014;39:588-604 https://doi.org/10.1007/s00261-014-0083-3
  9. Catalano OA, Samir AE, Sahani DV, Hahn PF. Pixel distribution analysis: can it be used to distinguish clear cell carcinomas from angiomyolipomas with minimal fat? Radiology 2008;247:738-746 https://doi.org/10.1148/radiol.2473070785
  10. Hindman N, Ngo L, Genega EM, Melamed J, Wei J, Braza JM, et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 2012;265:468-477 https://doi.org/10.1148/radiol.12112087
  11. Squillaci E, Manenti G, Di Stefano F, Miano R, Strigari L, Simonetti G. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 2004;23:39-45
  12. Cova M, Squillaci E, Stacul F, Manenti G, Gava S, Simonetti G, et al. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 2004;77:851-857 https://doi.org/10.1259/bjr/26525081
  13. Zhang J, Tehrani YM, Wang L, Ishill NM, Schwartz LH, Hricak H. Renal masses: characterization with diffusion-weighted MR imaging--a preliminary experience. Radiology 2008;247:458-464 https://doi.org/10.1148/radiol.2472070823
  14. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology 2009;251:398-407 https://doi.org/10.1148/radiol.2512080880
  15. Tanaka H, Yoshida S, Fujii Y, Ishii C, Tanaka H, Koga F, et al. Diffusion-weighted magnetic resonance imaging in the differentiation of angiomyolipoma with minimal fat from clear cell renal cell carcinoma. Int J Urol 2011;18:727-730 https://doi.org/10.1111/j.1442-2042.2011.02824.x
  16. Agnello F, Roy C, Bazille G, Galia M, Midiri M, Charles T, et al. Small solid renal masses: characterization by diffusion-weighted MRI at 3 T. Clin Radiol 2013;68:e301-e308 https://doi.org/10.1016/j.crad.2013.01.002
  17. Sasamori H, Saiki M, Suyama J, Ohgiya Y, Hirose M, Gokan T. Utility of apparent diffusion coefficients in the evaluation of solid renal tumors at 3T. Magn Reson Med Sci 2014;13:89-95 https://doi.org/10.2463/mrms.2013-0038
  18. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986;161:401-407 https://doi.org/10.1148/radiology.161.2.3763909
  19. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 2011;46:285-291
  20. Chandarana H, Kang SK, Wong S, Rusinek H, Zhang JL, Arizono S, et al. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Invest Radiol 2012;47:688-696 https://doi.org/10.1097/RLI.0b013e31826a0a49
  21. Rheinheimer S, Stieltjes B, Schneider F, Simon D, Pahernik S, Kauczor HU, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters--initial experience. Eur J Radiol 2012;81:e310-e316 https://doi.org/10.1016/j.ejrad.2011.10.016
  22. Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology 2008;249:891-899 https://doi.org/10.1148/radiol.2493080080
  23. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845 https://doi.org/10.2307/2531595
  24. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174 https://doi.org/10.2307/2529310
  25. Squillaci E, Manenti G, Cova M, Di Roma M, Miano R, Palmieri G, et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 2004;24:4175-4179
  26. Manenti G, Di Roma M, Mancino S, Bartolucci DA, Palmieri G, Mastrangeli R, et al. Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med 2008;113:199-213 https://doi.org/10.1007/s11547-008-0246-9
  27. Zhang JL, Sigmund EE, Chandarana H, Rusinek H, Chen Q, Vivier PH, et al. Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification. Radiology 2010;254:783-792 https://doi.org/10.1148/radiol.09090891
  28. Gaing B, Sigmund EE, Huang WC, Babb JS, Parikh NS, Stoffel D, et al. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Invest Radiol 2015;50:144-152 https://doi.org/10.1097/RLI.0000000000000111
  29. Inci E, Hocaoglu E, Aydin S, Cimilli T. Diffusion-weighted magnetic resonance imaging in evaluation of primary solid and cystic renal masses using the Bosniak classification. Eur J Radiol 2012;81:815-820 https://doi.org/10.1016/j.ejrad.2011.02.024
  30. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A, Iyer VK, et al. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 2012;53:349-358 https://doi.org/10.1258/ar.2011.110415
  31. Mytsyk Y, Borys Y, Komnatska I, Dutka I, Shatynska-Mytsyk I. Value of the diffusion-weighted MRI in the differential diagnostics of malignant and benign kidney neoplasms - our clinical experience. Pol J Radiol 2014;79:290-295 https://doi.org/10.12659/PJR.890604
  32. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009;11:102-125 https://doi.org/10.1593/neo.81328
  33. Wang H, Cheng L, Zhang X, Wang D, Guo A, Gao Y, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 2010;257:135-143 https://doi.org/10.1148/radiol.10092396
  34. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol 2011;196:1351-1361 https://doi.org/10.2214/AJR.10.5515
  35. Chen X, Qin L, Pan D, Huang Y, Yan L, Wang G, et al. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology 2014;271:113-125 https://doi.org/10.1148/radiol.13131572

Cited by

  1. RE: Distinguishing between Renal Cell Carcinoma and Fat Poor Angiomyolipoma in Diffusion-Weighted Imaging vol.18, pp.2, 2016, https://doi.org/10.3348/kjr.2017.18.2.410
  2. Selection and Reporting of Statistical Methods to Assess Reliability of a Diagnostic Test: Conformity to Recommended Methods in a Peer-Reviewed Journal vol.18, pp.6, 2017, https://doi.org/10.3348/kjr.2017.18.6.888
  3. Use of intravoxel incoherent motion diffusion-weighted imaging to detect early changes in diabetic kidneys vol.43, pp.10, 2016, https://doi.org/10.1007/s00261-018-1521-4
  4. In-Phase and Opposed-Phase Imaging: Applications of Chemical Shift and Magnetic Susceptibility in the Chest and Abdomen vol.39, pp.1, 2016, https://doi.org/10.1148/rg.2019180043
  5. Renal Angiomyolipoma Based on New Classification: How to Differentiate It From Renal Cell Carcinoma vol.212, pp.3, 2019, https://doi.org/10.2214/ajr.18.20408
  6. Comparison of Monoexponential, Biexponential, Stretched-Exponential, and Kurtosis Models of Diffusion-Weighted Imaging in Differentiation of Renal Solid Masses vol.20, pp.5, 2016, https://doi.org/10.3348/kjr.2018.0474
  7. Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Res vol.20, pp.5, 2019, https://doi.org/10.3348/kjr.2018.0757
  8. Differentiating between malignant and benign renal tumors: do IVIM and diffusion kurtosis imaging perform better than DWI? vol.29, pp.12, 2016, https://doi.org/10.1007/s00330-019-06240-6
  9. Differentiation between fat-poor angiomyolipoma and clear cell renal cell carcinoma: qualitative and quantitative analysis using arterial spin labeling MR imaging vol.45, pp.2, 2020, https://doi.org/10.1007/s00261-019-02303-w
  10. Diagnostic test accuracy of ADC values for identification of clear cell renal cell carcinoma: systematic review and meta-analysis vol.30, pp.7, 2016, https://doi.org/10.1007/s00330-020-06740-w
  11. Renal perfusion imaging by MRI vol.52, pp.2, 2016, https://doi.org/10.1002/jmri.26911
  12. Utility of Diffusion‐Weighted Imaging for Guiding Clinical Management of Patients With Kidney Transplant: A Prospective Study vol.52, pp.2, 2016, https://doi.org/10.1002/jmri.27071
  13. Diagnostic Performance of MRI in the Detection of Renal Lipid-Poor Angiomyolipomas: A Systematic Review and Meta-Analysis vol.296, pp.3, 2016, https://doi.org/10.1148/radiol.2020192070
  14. MR texture analysis in differentiating renal cell carcinoma from lipid-poor angiomyolipoma and oncocytoma vol.93, pp.1114, 2016, https://doi.org/10.1259/bjr.20200569
  15. A review of clinical and MR imaging features of renal lipid-poor angiomyolipomas vol.46, pp.5, 2016, https://doi.org/10.1007/s00261-020-02835-6