Acknowledgement
Supported by : National Research Foundation (NRF) of Korea
References
- Binder CJ, Chang MK, Shaw PX, et al. Innate and acquired immunity in atherogenesis. Nat Med 2002;8:1218-26. https://doi.org/10.1038/nm1102-1218
- Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 2002;8:1211-7. https://doi.org/10.1038/nm1102-1211
- Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011;3:204-12.
- Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006;7:508-19.
- Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 2002;91:281-91. https://doi.org/10.1161/01.RES.0000029784.15893.10
- Stancel N, Chen CC, Ke LY, et al. Interplay between CRP, Atherogenic LDL, and LOX-1 and Its Potential Role in the Pathogenesis of Atherosclerosis. Clin Chem 2016;62:320-7. https://doi.org/10.1373/clinchem.2015.243923
- Bjorkbacka H, Fredrikson GN, Nilsson J. Emerging biomarkers and intervention targets for immune-modulation of atherosclerosis - a review of the experimental evidence. Atherosclerosis 2013;227:9-17. https://doi.org/10.1016/j.atherosclerosis.2012.10.074
- Clarke M, Bennett M. The emerging role of vascular smooth muscle cell apoptosis in atherosclerosis and plaque stability. Am J Nephrol 2006;26:531-5. https://doi.org/10.1159/000097815
- Tabas I, Tall A, Accili D. The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ Res 2010;106:58-67. https://doi.org/10.1161/CIRCRESAHA.109.208488
- Lusis AJ. Atherosclerosis. Nature 2000;407:233-41. https://doi.org/10.1038/35025203
- Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2007;17:253-8. https://doi.org/10.1016/j.tcm.2007.09.001
- Vinay DS, Kwon BS. Immunotherapy of cancer with 4-1BB. Mol Cancer Ther 2012;11:1062-70. https://doi.org/10.1158/1535-7163.MCT-11-0677
- Zhang GB, Dong QM, Hou JQ, et al. Characterization and application of three novel monoclonal antibodies against human 4-1BB: distinct epitopes of human 4-1BB on lung tumor cells and immune cells. Tissue Antigens 2007;70:470-9. https://doi.org/10.1111/j.1399-0039.2007.00943.x
- Broll K, Richter G, Pauly S, Hofstaedter F, Schwarz H. CD137 expression in tumor vessel walls. High correlation with malignant tumors. Am J Clin Pathol 2001;115:543-9. https://doi.org/10.1309/E343-KMYX-W3Y2-10KY
- Wan YL, Zheng SS, Zhao ZC, Li MW, Jia CK, Zhang H. Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. World J Gastroenterol 2004;10:195-9. https://doi.org/10.3748/wjg.v10.i2.195
- Hansson GK, Robertson AK, Soderberg-Naucler C. Inflammation and atherosclerosis. Annu Rev Pathol 2006;1:297-329. https://doi.org/10.1146/annurev.pathol.1.110304.100100
- Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 2006;86:515-81. https://doi.org/10.1152/physrev.00024.2005
- Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002;27:19-26. https://doi.org/10.1016/S0968-0004(01)01995-8
- Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487-501. https://doi.org/10.1016/S0092-8674(01)00237-9
- Robertson AK, Hansson GK. T cells in atherogenesis: for better or for worse? Arterioscler Thromb Vasc Biol 2006;26:2421-32. https://doi.org/10.1161/01.ATV.0000245830.29764.84
- Kwon B, Kim BS, Cho HR, Park JE, Kwon BS. Involvement of tumor necrosis factor receptor superfamily(TNFRSF) members in the pathogenesis of inflammatory diseases. Exp Mol Med 2003;35:8-16. https://doi.org/10.1038/emm.2003.2
- Lee SW, Park Y, Song A, Cheroutre H, Kwon BS, Croft M. Functional dichotomy between OX40 and 4-1BB in modulating effector CD8 T cell responses. J Immunol 2006;177:4464-72. https://doi.org/10.4049/jimmunol.177.7.4464
- Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest 2004;114:427-437. https://doi.org/10.1172/JCI200420479
- Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 2016;20:17-28. https://doi.org/10.1111/jcmm.12689
- Smith E, Prasad KM, Butcher M, et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 2010;121:1746-55. https://doi.org/10.1161/CIRCULATIONAHA.109.924886
- Butcher MJ, Gjurich BN, Phillips T, Galkina EV. The IL-17A/IL-17RA axis plays a proatherogenic role via the regulation of aortic myeloid cell recruitment. Circ Res 2012;110:675-87. https://doi.org/10.1161/CIRCRESAHA.111.261784
- Taleb S, Romain M, Ramkhelawon B, et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 2009;206:2067-77. https://doi.org/10.1084/jem.20090545
- Liao YH, Xia N, Zhou SF, et al. Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J Am Coll Cardiol 2012;59:420-9. https://doi.org/10.1016/j.jacc.2011.10.863
- Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775-87. https://doi.org/10.1016/j.cell.2008.05.009
- Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008;9:239-44. https://doi.org/10.1038/ni1572
- Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008;8:523-32. https://doi.org/10.1038/nri2343
- Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330-6. https://doi.org/10.1038/ni904
- Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage. Nat Immunol 2007;8:457-62. https://doi.org/10.1038/ni1455
- Foks AC, Litchman AH, Kuiper J. Treating atherosclerosis with regulatory T cells. Arterioscler Thromb Vasc Biol 2015;35:280-7. https://doi.org/10.1161/ATVBAHA.114.303568
- Mor A, Planer D, Luboshits G, et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007;27:893-900. https://doi.org/10.1161/01.ATV.0000259365.31469.89
- Wang Z, Mao S, Zhan Z, Yu K, He C, Wang C. Effect of hyperlipidemia on Foxp3 expression in apolipoprotein E-knockout mice. J Cardiovasc Med (Hagerstown) 2014;15:273-9. https://doi.org/10.2459/JCM.0b013e3283641b9c
- Ait-Oufella H, Salomon BL, Potteaux S, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178-80. https://doi.org/10.1038/nm1343
- Gotsman I, Grabie N, Gupta R, et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 2006;114:2047-55. https://doi.org/10.1161/CIRCULATIONAHA.106.633263
- Mallat Z, Gojova A, Marchiol-Fournigault C, et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001;89:930-4. https://doi.org/10.1161/hh2201.099415
- Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006;441:235-8. https://doi.org/10.1038/nature04753
- Lin J, Li M, Wang Z, He S, Ma X, Li D. The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J Lipid Res 2010;51:1208-17. https://doi.org/10.1194/jlr.D000497
- Maganto-Garcia E, Bu DX, Tarrio ML, et al. Foxp3+-inducible regulatory T cells suppress endothelial activation and leukocyte recruitment. J Immunol 2011;187:3521-9. https://doi.org/10.4049/jimmunol.1003947
- Gotsman I, Sharpe AH, Lichtman AH. T-cell costimulation and coinhibition in atherosclerosis. Circ Res 2008;103:1220-31. https://doi.org/10.1161/CIRCRESAHA.108.182428
- Smeets E, Meiler S, Lutgens E. Lymphocytic tumor necrosis factor receptor superfamily co-stimulatory molecules in the pathogenesis of atherosclerosis. Curr Opin Lipidol 2013;24:518-24. https://doi.org/10.1097/MOL.0000000000000025
- Michallet MC, Rota G, Maslowski K, Guarda G. Innate receptors for adaptive immunity. Curr Opin Microbiol 2013;16:296-302. https://doi.org/10.1016/j.mib.2013.04.003
- Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol 2013;34:511-9. https://doi.org/10.1016/j.it.2013.06.003
- Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol 2015;94:193-205. https://doi.org/10.1111/ejh.12427
- Lutgens E, Lievens D, Beckers L, et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010;207:391-404. https://doi.org/10.1084/jem.20091293
- van Wanrooij EJ, van Puijvelde GH, de Vos P, Yagita H, van Berkel TJ, Kuiper J. Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptordeficient mice. Arterioscler Thromb Vasc Biol 2007;27:204-10. https://doi.org/10.1161/01.ATV.0000251007.07648.81
- Olofsson PS, Soderstrom LA, Wagsater D, et al. CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 2008;117:1292-301. https://doi.org/10.1161/CIRCULATIONAHA.107.699173
- Jeon HJ, Choi JH, Jung IH, et al. CD137 (4-1BB) deficiency reduces atherosclerosis in hyperlipidemic mice. Circulation 2010;121:1124-33. https://doi.org/10.1161/CIRCULATIONAHA.109.882704
- Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 2003;3:609-20. https://doi.org/10.1038/nri1148
- Makkouk A, Chester C, Kohrt HE. Rationale for anti-CD137 cancer immunotherapy. Eur J Cancer 2016;54:112-9. https://doi.org/10.1016/j.ejca.2015.09.026
- Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep 2014;47:122-9. https://doi.org/10.5483/BMBRep.2014.47.3.283
- Kwon BS, Hurtado JC, Lee ZH, et al. Vinay DS. Immune responses in 4-1BB (CD137)-deficient mice. J Immunol 2002;168:5483-90. https://doi.org/10.4049/jimmunol.168.11.5483
- Lee SW, Vella AT, Kwon BS, Croft M. Enhanced CD4 T cell responsiveness in the absence of 4-1BB. J Immunol 2005;174:6803-8. https://doi.org/10.4049/jimmunol.174.11.6803
- Vinay DS, Choi BK, Bae JS, Kim WY, Gebhardt BM, Kwon BS. CD137-deficient mice have reduced NK/NKT cell numbers and function, are resistant to lipopolysaccharide-induced shock syndromes, and have lower IL-4 responses. J Immunol 2004;173:4218-29. https://doi.org/10.4049/jimmunol.173.6.4218
- Choi BK, Kim YH, Kwon PM, et al. 4-1BB functions as a survival factor in dendritic cells. J Immunol 2009;182:4107-15. https://doi.org/10.4049/jimmunol.0800459
- Lee SW, Park Y, Eun SY, Madireddi S, Cheroutre H, Croft M. Cutting edge: 4-1BB controls regulatory activity in dendritic cells through promoting optimal expression of retinal dehydrogenase. J Immunol 2012;189:2697-701. https://doi.org/10.4049/jimmunol.1201248
- Yan J, Gong J, Liu P, Wnag C, Chen G. Positive correlation between CD137 expression and complex stenosis morphology in patients with acute coronary syndromes. Clin Chim Acta 2011;412:993-8. https://doi.org/10.1016/j.cca.2011.02.038
- Dongming L, Zuxun L, Liangjie X, Biao W, Ping Y. Enhanced levels of soluble and membrane-bound CD137 levels in patients with acute coronary syndromes. Clin Chim Acta 2010;411:406-10. https://doi.org/10.1016/j.cca.2009.12.011
- Yan J, Wang C, Wang Z, Yuan W. The effect of CD137-CD137 ligand interaction on phospholipase C signaling pathway in human endothelial cells. Chem Biol Interact 2013;206:256-61. https://doi.org/10.1016/j.cbi.2013.09.014
- Yu Y, He Y, Yang TT, et al. Elevated plasma levels and monocyteassociated expression of CD137 ligand in patients with acute atherothrombotic stroke. Eur Rev Med Pharmacol Sci 2014;18:1525-32.
- Yan J, Wang C, Chen R, Yang H. Clinical implications of elevated serum soluble CD137 levels in patients with acute coronary syndrome. Clinics (Sao Paulo) 2013;68:193-8. https://doi.org/10.6061/clinics/2013(02)OA12
- Li Y, Yan J, Wu C, Wang Z, Yuan W, Wang D. CD137-CD137L interaction regulates atherosclerosis via cyclophilin A in apolipoprotein E-deficient mice. PLoS One 2014;9:e88563. https://doi.org/10.1371/journal.pone.0088563
- Silvestre-Roig C, de Winther M, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res 2014;114:214-26. https://doi.org/10.1161/CIRCRESAHA.114.302355
- Choi ET, Collins ET, Marine LA, et al. Matrix metalloproteinase-9 modulation by resident arterial cells is responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2005;25:1020-5. https://doi.org/10.1161/01.ATV.0000161275.82687.f6
- Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:1120-5. https://doi.org/10.1161/01.ATV.0000218496.60097.e0
- Mittal B, Mishra A, Srivastava A, Kumar S, Garg N. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem 2014;64:1-72.
- Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006;116:59-69.
- Chen Y, Aratani Y, Osawa T, Fukuyama N, Tsuji C, Nakazawa H. Activation of inducible nitric oxide synthase increases MMP-2 and MMP-9 levels in ApoE-knockout mice. Tokai J Exp Clin Med 2008;33:28-34.
- Wei DH, Jia XY, Liu YH, et al. Cathepsin L stimulates autophagy and inhibits apoptosis of ox-LDL-induced endothelial cells: potential role in atherosclerosis. Int J Mol Med 2013;31:400-6. https://doi.org/10.3892/ijmm.2012.1201
- Kitamoto S, Sukhova GK, Sun J, et al. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptorknockout mice. Circulation 2007;115:2065-75. https://doi.org/10.1161/CIRCULATIONAHA.107.688523
- Sukhova GK, Zhang Y, Pan JH, et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2003;111:897-906. https://doi.org/10.1172/JCI200314915
- Guo J, Bot I, de Nooijer R, et al. Leucocyte cathepsin K affects atherosclerotic lesion composition and bone mineral density in lowdensity lipoprotein receptor deficient mice. Cardiovasc Res 2009;81:278-85.
- Jaffer FA, Kim DE, Quinti L, et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation 2007;115:2292-8. https://doi.org/10.1161/CIRCULATIONAHA.106.660340
- Samokhin AO, Wong A, Saftig P, Bromme D. Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 2008;200:58-68. https://doi.org/10.1016/j.atherosclerosis.2007.12.047
- Levick SP, Goldspink PH. Could interferon-gamma be a therapeutic target for treating heart failure? Heart Fail Rev 2014;19:227-36. https://doi.org/10.1007/s10741-013-9393-8
- Harvey EJ, Ramji DP. Interferon-gamma and atherosclerosis: pro- or anti-atherogenic? Cardiovasc Res 2005;67:11-20. https://doi.org/10.1016/j.cardiores.2005.04.019
- Smith MA, Moylan JS, Smith JD, Li W, Reid MB. IFN-gamma does not mimic the catabolic effects of TNF-alpha. Am J Physiol Cell Physiol 2007;293:C1947-52. https://doi.org/10.1152/ajpcell.00269.2007
-
Scott RA, Panitch A. Decorin mimic regulates platelet-derived growth factor and interferon-
$\gamma$ stimulation of vascular smooth muscle cells. Biomacromolecules 2014;15:2090-103. https://doi.org/10.1021/bm500224f - Dollery CM, Libby P. Atherosclerosis and proteinase activation. Cardiovasc Res 2006;69:625-35. https://doi.org/10.1016/j.cardiores.2005.11.003
- Yan J, Chen G, Gong J, Wang C, Du R. Upregulation of OX40-OX40 ligand system on T lymphocytes in patients with acute coronary syndromes. J Cardiovasc Pharmacol 2009;54:451-5. https://doi.org/10.1097/FJC.0b013e3181be7578
- Liu DM, Yan JC, Wang CP, et al. The clinical implications of increased OX40 ligand expression in patients with acute coronary syndrome. Clin Chim Acta 2008;397:22-6. https://doi.org/10.1016/j.cca.2008.07.003
- Lee WH, Kim SH, Lee Y, et al. Tumor necrosis factor receptor superfamily 14 is involved in atherogenesis by inducing proinflammatory cytokines and matrix metalloproteinases. Arterioscler Thromb Vasc Biol 2010;21:2004-10.
- Kim SH, Lee WH, Kwon BS, Oh GT, Choi YH, Park JE. Tumor necrosis factor receptor superfamily 12 may destabilize atherosclerotic plaques by inducing matrix metalloproteinases. Jpn Circ J 2001;65:136-8. https://doi.org/10.1253/jcj.65.136
- Jung IH, Choi JH, Jin J, et al. CD137-inducing factors from T cells and macrophages accelerate the destabilization of atherosclerotic plaques in hyperlipidemic mice. FASEB J 2014;28:4779-91. https://doi.org/10.1096/fj.14-253732
- Choi JH, Cheong C, Dandamudi DB, et al. Flt3 signaling-dependent dendritic cells protect against atherosclerosis. Immunity 2011;35:819-31. https://doi.org/10.1016/j.immuni.2011.09.014
- Pauly S, Broll K, Wittmann M, Giegerich G, Schwarz H. CD137 is expressed by follicular dendritic cells and costimulates B lymphocyte activation in germinal centers. J Leukoc Biol 2002;72:35-42.
- Choi BK, Kim YH, Kwon PM, et al. 4-1BB functions as a survival factor in dendritic cells. J Immunol 2009;182:4107-15. https://doi.org/10.4049/jimmunol.0800459
- Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Chen H. Effects of 4-1BB signaling on the biological function of murine dendritic cells. Oncol Lett 2011;3:477-81.
- Lee SW, Park Y, Eun SY, Madireddi S, Cheroutre H, Croft M. Cutting edge: 4-1BB controls regulatory activity in dendritic cells through promoting optimal expression of retinal dehydrogenase. J Immunol 2012;189:2697-701. https://doi.org/10.4049/jimmunol.1201248
Cited by
- CD137-CD137L interaction modulates neointima formation and the phenotype transformation of vascular smooth muscle cells via NFATc1 signaling vol.439, pp.1, 2016, https://doi.org/10.1007/s11010-017-3136-4
- Exploring immune checkpoints as potential therapeutic targets in atherosclerosis vol.114, pp.3, 2016, https://doi.org/10.1093/cvr/cvx248
- Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis vol.114, pp.2, 2016, https://doi.org/10.1007/s00395-019-0715-4
- Activating CD137 Signaling Promotes Sprouting Angiogenesis via Increased VEGFA Secretion and the VEGFR2/Akt/eNOS Pathway vol.2020, pp.None, 2016, https://doi.org/10.1155/2020/1649453
- Contributions of Costimulatory Molecule CD137 in Endothelial Cells vol.10, pp.11, 2016, https://doi.org/10.1161/jaha.120.020721