DOI QR코드

DOI QR Code

Review of Recent Smog Chamber Studies for Secondary Organic Aerosol

스모그 챔버를 이용한 이차 초미세유기먼지의 최근 연구 동향

  • Lim, Yong Bin (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Lee, Seung-Bok (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Kim, Hwajin (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Kim, Jin Young (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology) ;
  • Bae, Gwi-Nam (Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology)
  • 임용빈 (한국과학기술연구원 환경복지연구단) ;
  • 이승복 (한국과학기술연구원 환경복지연구단) ;
  • 김화진 (한국과학기술연구원 환경복지연구단) ;
  • 김진영 (한국과학기술연구원 환경복지연구단) ;
  • 배귀남 (한국과학기술연구원 환경복지연구단)
  • Received : 2016.02.05
  • Accepted : 2016.04.11
  • Published : 2016.04.30

Abstract

A smog chamber has been an effective tool to study air quality, particularly secondary organic aerosol (SOA), which is typically formed by atmospheric oxidation of volatile organic compounds (VOCs). In controlled environments, smog chamber studies have validated atmospheric oxidation by identifying, quantifying and monitoring products with state-of-art instruments (e.g., aerosol mass spectrometer, scanning mobility particle sizer) and provided chemical insights of SOA formation by elucidating reaction mechanisms. This paper reviews types of smog chambers and the current state of smog chamber studies that have accomplished to find pathways of SOA formation, focusing on gas-particle partitioning of semivolatile products of VOC oxidation, heterogeneous reactions on aerosol surface, and aqueous chemistry in aerosol waters (e.g., cloud/fog droplets and wet aerosols). For future chamber studies, then, this paper discusses potential formation pathways of fine particles that East Asia countries (e.g., Korea and China) currently suffer from due to massive formation that gives rise to fatal health problems.

Keywords

References

  1. Aiken, A.C., P.F. Decarlo, J.H. Kroll, D.R. Worsnop, J.A. Huffman, K.S. Docherty, I.M. Ulbrich, C. Mohr, J.R. Kimmel, D. Sueper, Y. Sun, Q. Zhang, A. Trimborn, M. Northway, P.J. Ziemann, M.R. Canagaratna, T.B. Onasch, M.R. Alfarra, A.S.H. Prevot, J. Dommen, J. Duplissy, A. Metzger, U. Baltensperger, and J.L. Jimenez (2008) O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478-4485. https://doi.org/10.1021/es703009q
  2. Akimoto, H., M. Hoshino, G. Inoue, F. Sakamaki, N. Washida, and M. Okuda (1979) Design and characterization of the evacuable and bakable photochemical smog chamber, Environ. Sci. Technol., 13, 471-475. https://doi.org/10.1021/es60152a014
  3. Arey, J., S.M. Aschmann, E.S.C. Kwok, and R. Atkinson (2001) Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the $NO_x$-air photooxidations of $C_5-C_8$ n-alkanes, J. Phys. Chem. A, 105, 1020-1027. https://doi.org/10.1021/jp003292z
  4. Atkinson, R. (2007) Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method, Atmos. Environ., 41, 8468-8485. https://doi.org/10.1016/j.atmosenv.2007.07.002
  5. Atkinson, R. and J. Arey (2003) Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605-4638. https://doi.org/10.1021/cr0206420
  6. Atkinson, R., D.L. Baulch, R.A. Cox, J.N. Crowley, R.F. Hampson, R.G. Hynes, M.E. Jenkin, M.J. Rossi, and J. Troe (2006) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055. https://doi.org/10.5194/acp-6-3625-2006
  7. Badali, K.M., S. Zhou, D. Aljawhary, M. Antinolo, W.J. Chen, A. Lok, E. Mungall, J.P.S. Wong, R. Zhao, and J.P.D. Abbatt (2015) Formation of hydroxyl radicals from photolysis of secondary organic aerosol material, Atmos. Chem. Phys., 15, 7831-7840. https://doi.org/10.5194/acp-15-7831-2015
  8. Bae, G.N., J.Y. Park, M.C. Kim, S.B. Lee, K.C. Moon, and Y.P. Kim (2008) Effect of light intensity on the ozone formation and the aerosol number concentration of ambient air in Seoul, Part. Aerosol Res., 4, 9-10.
  9. Becker, K.H. (1996) The European Photoreactor EUPHORE: Design and Technical Development of the European Photoreactor and First Experimental Results: Final Report of the EC-Project: Contract EV5V-CT92-0059: Funding Period, January 1993-December 1995.
  10. Benson, S.W. (1965) Effects of resonance and structure on the thermochemistry of organic peroxy radicals and the kinetics of combustion reactions1, J. Am. Chem. Soc., 87, 972-979. https://doi.org/10.1021/ja01083a006
  11. Blando, J.D. and B.J. Turpin (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623-1632. https://doi.org/10.1016/S1352-2310(99)00392-1
  12. Boge, O., A. Mutzel, Y. Iinuma, P. Yli-Pirila, A. Kahnt, J. Joutsensaari, and H. Herrmann (2013) Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene, Atmos. Environ., 79, 553-560. https://doi.org/10.1016/j.atmosenv.2013.07.034
  13. Carlton, A.G., B.J. Turpin, H.J. Lim, K.E. Altieri, and S. Seitzinger (2006) Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid oxidation yields low volatility organic acids in clouds, Geophys. Res. Lett., 33, 10.1029/2005gl025374.
  14. Carlvert, J.G., R. Atkinson, K.H. Becker, R.M. Kamens, J.H. Seinfeld, T.J. Wallington, and G. Yarwood (2002) The Mechanisms of Atmospheric Oxidation of Aromatic Hydrocarbons, Oxford University Press: New York.
  15. Carter, W.P.L., D.R. Cocker Iii, D.R. Fitz, I.L. Malkina, K. Bumiller, C.G. Sauer, J.T. Pisano, C. Bufalino, and C. Song (2005) A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation, Atmos. Environ., 39, 7768-7788. https://doi.org/10.1016/j.atmosenv.2005.08.040
  16. Chattopadhyay, S., H.J. Tobias, and P.J. Ziemann (2001) A method for measuring vapor pressures of low-volatility organic aerosol compounds using a thermal desorption particle beam mass spectrometer, Anal. Chem., 73, 3797-3803. https://doi.org/10.1021/ac010304j
  17. Chen, S. (2014) China to build 'world's largest' smog chamber to solve pollution puzzle, South China Morning Post, Retrived from http://www.scmp.com/news/ china/article/1436336/china-build-worlds-largestsmog-chamber-solve-pollution-puzzle?page=all.
  18. Claeys, M., B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M.O. Andreae, P. Artaxo, and W. Maenhaut (2004) Formation of secondary organic aerosols through photooxidation of isoprene, Science, 303, 1173-1176. https://doi.org/10.1126/science.1092805
  19. Cocker, D.R., S.L. Clegg, R.C. Flagan, and J.H. Seinfeld (2001a) The effect of water on gas-particle partitioning of secondary organic aerosol. Part I: alphapinene/ozone system, Atmos. Environ., 35, 6049-6072. https://doi.org/10.1016/S1352-2310(01)00404-6
  20. Cocker, D.R., R.C. Flagan, and J.H. Seinfeld (2001b) State-ofthe-art chamber facility for studying atmospheric aerosol chemistry, Environ. Sci. Technol., 35, 2594-2601. https://doi.org/10.1021/es0019169
  21. Docherty, K.S., W. Wu, Y.B. Lim, and P.J. Ziemann (2005) Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O-3, Environ. Sci. Technol., 39, 4049-4059. https://doi.org/10.1021/es050228s
  22. Ehn, M., J.A. Thornton, E. Kleist, M. Sipila, H. Junninen, I. Pullinen, M. Springer, F. Rubach, R. Tillmann, B. Lee, F. Lopez-Hilfiker, S. Andres, I.H. Acir, M. Rissanen, T. Jokinen, S. Schobesberger, J. Kangasluoma, J. Kontkanen, T. Nieminen, T. Kurten, L.B. Nielsen, S. Jorgensen, H.G. Kjaergaard, M. Canagaratna, M. Dal Maso, T. Berndt, T. Petaja, A. Wahner, V.M. Kerminen, M. Kulmala, D.R. Worsnop, J. Wildt, and T.F. Mentel (2014) A large source of lowvolatility secondary organic aerosol, Nature, 506, 476-479. https://doi.org/10.1038/nature13032
  23. El-Sayed, M.M.H., Y. Wang, and C.J. Hennigan (2015) Direct atmospheric evidence for the irreversible formation of aqueous secondary organic aerosol, Geophys. Res. Lett., 42, 5577-5586. https://doi.org/10.1002/2015GL064556
  24. Ervens, B., A.G. Carlton, B.J. Turpin, K.E. Altieri, S.M. Kreidenweis, and G. Feingold (2008) Secondary organic aerosol yields from cloud-processing of isoprene oxidation products, Geophys. Res. Lett., 35, 10.1029/2007gl031828.
  25. Ervens, B. and R. Volkamer (2010) Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219-8244. https://doi.org/10.5194/acp-10-8219-2010
  26. Finlayson-Pitts, B.J. and J.N. Pitts Jr (1999) Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. Academic press.
  27. Forstner, H.J.L., R.C. Flagan, and J.H. Seinfeld (1997) Molecular speciation of secondary organic aerosol from photooxidation of the higher alkenes: 1-octene and 1-decene, Atmos. Environ., 31, 1953-1964. https://doi.org/10.1016/S1352-2310(96)00356-1
  28. Forziati, A.F., D.L. Camin, and F.D. Rossini (1950) Density, refractive index, boiling point, and vapor pressure of 8 monoolefin (1-alkene), 6 pentadiene, and 2 cyclomonoolefin hydrocarbons, J. Res. Natl. Stand., 45, 406-410. https://doi.org/10.6028/jres.045.044
  29. Fratzke, A.R. and P.J. Reilly (1986) Thermodynamic and kinetic analysis of the dimerization of aqueous glyoxal, Int. J. Chem. Kinet., 18, 775-789. https://doi.org/10.1002/kin.550180705
  30. Fry, J.L., D.C. Draper, K.C. Barsanti, J.N. Smith, J. Ortega, P.M. Winkler, M.J. Lawler, S.S. Brown, P.M. Edwards, R.C. Cohen, and L. Lee (2014) Secondary organic aerosol formation and organic nitrate yield from $NO_3$ oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 48, 11944-11953. https://doi.org/10.1021/es502204x
  31. Fu, T.-M., D.J. Jacob, F. Wittrock, J.P. Burrows, M. Vrekoussis, and D.K. Henze (2008) Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res. Atmos., 113, 10.1029/2007jd009505.
  32. Galloway, M.M., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, R.C. Flagan, J.H. Seinfeld, and F.N. Keutsch (2009) Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331-3345. https://doi.org/10.5194/acp-9-3331-2009
  33. Gardner, S. (2014) LA Smog: the battle against air pollution, Marketplace, Retrieved from http://www.marketplace.org/topics/sustainability/we-used-be-china/la-smog-battle-against-air-pollution.
  34. Geiger, H., J. Kleffmann, and P. Wiesen (2002) Smog chamber studies on the influence of diesel exhaust on photosmog formation, Atmos. Environ., 36, 1737-1747. https://doi.org/10.1016/S1352-2310(02)00175-9
  35. Glowacki, D.R., J. Lockhart, M.A. Blitz, S.J. Klippenstein, M.J. Pilling, S.H. Robertson, and P.W. Seakins (2012) Interception of Excited Vibrational Quantum States by $O_2$ in Atmospheric Association Reactions, Science, 337, 1066-1069. https://doi.org/10.1126/science.1224106
  36. Goldstein, A.H. and I.E. Galbally (2007) Known and unexplored organic constituents in the earth's atmosphere, Environ. Sci. Technol., 41, 1514-1521. https://doi.org/10.1021/es072476p
  37. Gong, H.M., A. Matsunaga, and P.J. Ziemann (2005) Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with $NO_3$ radicals, J. Phys. Chem. A, 109, 4312-4324. https://doi.org/10.1021/jp058024l
  38. Griffin, R.J., D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (1999) Organic aerosol formation from the oxidation of biogenic hydrocarbons, J. Geophys. Res. Atmos., 104, 3555-3567. https://doi.org/10.1029/1998JD100049
  39. Guenther, A., C.N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W.A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor, and P. Zimmerman (1995) A global model of natural volatile organic compound emissions, J. Geophys. Res. Atmos., 100, 8873-8892. https://doi.org/10.1029/94JD02950
  40. Haagen-Smit, A.J. (1952) Chemistry and physiology of Los Angeles smog, Ind. Eng. Chem., 44, 1342-1346. https://doi.org/10.1021/ie50510a045
  41. Haagen-Smit, A.J. (1963) Photochemistry and smog, J. Air Pollut. Control Assoc., 13, 444-454. https://doi.org/10.1080/00022470.1963.10468205
  42. Haagen-Smit, A.J., C.E. Bradley, and M.M. Fox (1953) Ozone formation in photochemical oxidation of organic substances, Ind. Eng. Chem., 45, 2086-2089. https://doi.org/10.1021/ie50525a044
  43. Hatakeyama, S. and H. Akimoto (1994) Reactions of criegee intermediates in the gas phase, Res. Chem. Intermed., 20, 503-524. https://doi.org/10.1163/156856794X00432
  44. Hawkins, J.E. and G.T. Armstrong (1954) Physical and thermodynamic properties of terpenes. III. The Vapor pressures of ${\alpha}$-pinene and ${\beta}$-pinene, J. Am. Chem. Soc., 76, 3756-3758. https://doi.org/10.1021/ja01643a051
  45. Hennigan, C.J., M.H. Bergin, A.G. Russell, A. Nenes, and R.J. Weber (2009) Gas/particle partitioning of watersoluble organic aerosol in Atlanta, Atmos. Chem. Phys., 9, 3613-3628. https://doi.org/10.5194/acp-9-3613-2009
  46. Hess, G.D., F. Carnovale, M.E. Cope, and G.M. Johnson (1992) The evaluation of some photochemical smog reaction mechanisms - I. Temperature and initial composition effects, Atmos. Environ., 26A, 625-641.
  47. Hodas, N., A.P. Sullivan, K. Skog, F.N. Keutsch, J.L. Collett, S. Decesari, M.C. Facchini, A.G. Carlton, A. Laaksonen, and B.J. Turpin (2014) Aerosol liquid water driven by anthropogenic nitrate: implications for lifetimes of water-soluble organic gases and potential for secondary organic aerosol formation, Environ. Sci. Technol., 48, 11127-11136. https://doi.org/10.1021/es5025096
  48. Hong, Y.D., J.S. Han, J.D. Park, D.W. Jung, B.J. Kong, S.Y. Kim, and D.K. Lee (2001) A Study on the High-Ozone Episode and Photochemical Smog (I), National Instiute of Environmental Research Report 2001-13-605.
  49. Huang, R.-J., Y. Zhang, C. Bozzetti, K.-F. Ho, J.-J. Cao, Y. Han, K.R. Daellenbach, J.G. Slowik, S.M. Platt, F. Canonaco, P. Zotter, R. Wolf, S.M. Pieber, E.A. Bruns, M. Crippa, G. Ciarelli, A. Piazzalunga, M. Schwikowski, G. Abbaszade, J. Schnelle-Kreis, R. Zimmermann, Z. An, S. Szidat, U. Baltensperger, I.E. Haddad, and A.S.H. Prevot (2014) High secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514, 218-222. https://doi.org/10.1038/nature13774
  50. Hynes, R.G., D.E. Angove, S.M. Saunders, V. Haverd, and M. Azzi (2005) Evaluation of two MCM v3.1 alkene mechanisms using indoor environmental chamber data, Atmos. Environ., 39, 7251-7262. https://doi.org/10.1016/j.atmosenv.2005.09.005
  51. Im, Y., M. Jang, and R.L. Beardsley (2014) Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions, Atmos. Chem. Phys., 14, 4013-4027. https://doi.org/10.5194/acp-14-4013-2014
  52. Ip, H.S.S., X.H.H. Huang, and J.Z. Yu (2009) Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid, Geophys. Res. Lett., 36, 10.1029/2008GL036212.
  53. Jang, M. and R.M. Kamens (1999) Newly characterized products and composition of secondary aerosols from the reaction of alpha-pinene with ozone, Atmos. Environ., 33, 459-474. https://doi.org/10.1016/S1352-2310(98)00222-2
  54. Jang, M.S., N.M. Czoschke, S. Lee, and R.M. Kamens (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814-817. https://doi.org/10.1126/science.1075798
  55. Jang, M.S. and R.M. Kamens (2001) Characterization of secondary aerosol from the photooxidation of toluene in the presence of $NO_x$ and 1-propene, Environ. Sci. Technol., 35, 3626-3639. https://doi.org/10.1021/es010676+
  56. Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009) Evolution of organic aerosols in the atmosphere, Science, 326, 1525-1529. https://doi.org/10.1126/science.1180353
  57. Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger (2004) Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659-1662. https://doi.org/10.1126/science.1092185
  58. Kalberer, M., J. Yu, D.R. Cocker, R.C. Flagan, and J.H. Seinfeld (2000) Aerosol formation in the cyclohexeneozone system, Environ. Sci. Technol., 34, 4894-4901. https://doi.org/10.1021/es001180f
  59. Kamens, R.M., M.W. Gery, H.E. Jeffries, M. Jackson, and E.I. Cole (1982) Ozone-Isoprene Reactions - Product Formation and Aerosol Potential, Int. J. Chem. Kinet., 14, 955-975. https://doi.org/10.1002/kin.550140902
  60. Kamm, S., O. Mohler, K.H. Naumann, H. Saathoff, and U. Schurath (1999) The heterogeneous reaction of ozone with soot aerosol, Atmos. Environ., 33, 4651-4661. https://doi.org/10.1016/S1352-2310(99)00235-6
  61. Kanakidou, M., J.H. Seinfeld, S.N. Pandis, I. Barnes, F.J. Dentener, M.C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C.J. Nielsen, E. Swietlicki, J.P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G.K. Moortgat, R. Winterhalter, C.E.L. Myhre, K. Tsigaridis, E. Vignati, E.G. Stephanou, and J. Wilson (2005) Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123. https://doi.org/10.5194/acp-5-1053-2005
  62. Kim, H., B. Barkey, and S.E. Paulson (2010) Real refractive indices of ${\alpha}$- and ${\beta}$-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation, J. Geophys. Res. Atmos., 115, 10.1029/2010JD014549.
  63. Kim, H. and S.E. Paulson (2013) Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, ${\alpha}$-pinene and toluene, Atmos. Chem. Phys., 13, 7711-7723. https://doi.org/10.5194/acp-13-7711-2013
  64. Kim, J. (2002) Photochemical Reactions of Real Gas in an Indoor Smog Chamber, M.D. Thesis, Departiment of Environmental Engineering, The University of Seoul.
  65. Kim, Y., J.Y. Kim, S.B. Lee, K.C. Moon, and G.N. Bae (2015) Review on the recent $PM_{2.5}$ studies in China, J. Korean Soc. Atmos. Environ., 31, 411-429. https://doi.org/10.5572/KOSAE.2015.31.5.411
  66. King, S.M., T. Rosenoern, J.E. Shilling, Q. Chen, and S.T. Martin (2009) Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings, Atmos. Chem. Phys., 9, 2959-2971. https://doi.org/10.5194/acp-9-2959-2009
  67. Kleindienst, T.E., M. Jaoui, M. Lewandowski, J.H. Offenberg, C.W. Lewis, P.V. Bhave, and E.O. Edney (2007a) Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location, Atmos. Environ., 41, 8288-8300. https://doi.org/10.1016/j.atmosenv.2007.06.045
  68. Kleindienst, T.E., M. Lewandowski, J.H. Offenberg, M. Jaoui, and E.O. Edney (2007b) Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol, Geophys. Res. Lett., 34, 10.1029/2006gl027485.
  69. Kroll, J.H., N.M. Donahue, V.J. Cee, K.L. Demerjian, and J.G. Anderson (2002) Gas-phase ozonolysis of alkenes: Formation of OH from anti carbonyl oxides, J. Am. Chem. Soc., 124, 8518-8519. https://doi.org/10.1021/ja0266060
  70. Kroll, J.H., N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld (2006) Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40, 1869-1877. https://doi.org/10.1021/es0524301
  71. Kroll, J.H., N.L. Ng, S.M. Murphy, V. Varutbangkul, R.C. Flagan, and J.H. Seinfeld (2005) Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res. Atmos., 110, 10.1029/2005JD006004.
  72. Kulmala, M. (2015) Atmospheric chemistry: China's choking cocktail, Nature, 526, 497-499. https://doi.org/10.1038/526497a
  73. Kwok, E.S.C. and R. Atkinson (1995) Estimation of hydroxyl radical reaction-rate constants for gas-phase organiccompounds using a structure-reactivity relationship -an update, Atmos. Environ., 29, 1685-1695. https://doi.org/10.1016/1352-2310(95)00069-B
  74. Lai, C.C., B.J. Finlayson-Pitts, and W.V. Willis (1990) Formation of secondary ozonides from the reaction of an unsaturated phosphatidylcholine with ozone, Chem. Res. Toxicol., 3, 517-523. https://doi.org/10.1021/tx00018a005
  75. Lee, S.-B., G.-N. Bae, Y.-M. Lee, and K.-C. Moon (2013) Wall contamination of teflon bags used as a photochemical reaction chamber of ambient air, Part. Aerosol Res., 9, 149-161. https://doi.org/10.11629/jpaar.2013.9.3.149
  76. Lee, S.-B., G.-N. Bae, Y.-M. Lee, K.-C. Moon, and M. Choi (2010) Correlation between light intensity and ozone formation for photochemical smog in urban air of Seoul, Aerosol Air Qual. Res., 10, 540-549. https://doi.org/10.4209/aaqr.2010.05.0036
  77. Lee, S., M. Jang, and R.M. Kamens (2004) SOA formation from the photooxidation of ${\alpha}$-pinene in the presence of freshly emitted diesel soot exhaust, Atmos. Environ., 38, 2597-2605. https://doi.org/10.1016/j.atmosenv.2003.12.041
  78. Li, H., Z. Chen, L. Huang, and D. Huang (2016) Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol, Atmos. Chem. Phys., 16, 1837-1848. https://doi.org/10.5194/acp-16-1837-2016
  79. Li, H., X. Wang, W. Zhang, Y. Zhang, F. Bi, F. Xia, H. Li, and L. Meng (2014) Progress and prospective of atmospheric photochemical smog chamber simulation study in China, 4th Sino-French Joint Workshop on Atmospheric Environment, December 10th-13th, Lyon, France.
  80. Liggio, J., S.-M. Li, and R. McLaren (2005) Reactive uptake of glyoxal by particulate matter, J. Geophys. Res. Atmos., 110, 10.1029/2004JD005113.
  81. Lim, Y.B., Y. Tan, M.J. Perri, S.P. Seitzinger, and B.J. Turpin (2010) Aqueous chemistry and its role in secondary organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521-10539. https://doi.org/10.5194/acp-10-10521-2010
  82. Lim, Y.B., Y. Tan, and B.J. Turpin (2013) Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651-8667. https://doi.org/10.5194/acp-13-8651-2013
  83. Lim, Y.B. and B.J. Turpin (2015) Laboratory evidence of organic peroxide and peroxyhemiacetal formation in the aqueous phase and implications for aqueous OH, Atmos. Chem. Phys., 15, 12867-12877.
  84. Lim, Y.B. and P.J. Ziemann (2005) Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of $NO_x$, Environ. Sci. Technol., 39, 9229-9236. https://doi.org/10.1021/es051447g
  85. Lim, Y.B. and P.J. Ziemann (2009a) Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of $NO_x$, Aerosol Sci. Technol., 43, 604-619. https://doi.org/10.1080/02786820902802567
  86. Lim, Y.B. and P.J. Ziemann (2009b) Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of $NO_x$, Environ. Sci. Technol., 43, 2328-2334. https://doi.org/10.1021/es803389s
  87. Lim, Y.B. and P.J. Ziemann (2009c) Kinetics of the heterogeneous conversion of 1,4-hydroxycarbonyls to cyclic hemiacetals and dihydrofurans on organic aerosol particles, Phys. Chem. Chem. Phys., 11, 8029-8039. https://doi.org/10.1039/b904333k
  88. Limbeck, A., M. Kulmala, and H. Puxbaum (2003) Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30, 10.1029/2003GL017738.
  89. Matsunaga, A., K.S. Docherty, Y.B. Lim, and P.J. Ziemann (2009) Composition and yields of secondary organic aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of $NO_x$: Modeling and measurements, Atmos. Environ., 43, 1349-1357. https://doi.org/10.1016/j.atmosenv.2008.12.004
  90. Mauldin Iii, R.L., T. Berndt, M. Sipila, P. Paasonen, T. Petaja, S. Kim, T. Kurten, F. Stratmann, V.M. Kerminen, and M. Kulmala (2012) A new atmospherically relevant oxidant of sulphur dioxide, Nature, 488, 193-196. https://doi.org/10.1038/nature11278
  91. Neeb, P., O. Horie, and G.K. Moortgat (1996) Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds, Int. J. Chem. Kinet., 28, 721-730. https://doi.org/10.1002/(SICI)1097-4601(1996)28:10<721::AID-KIN2>3.0.CO;2-P
  92. Ng, N.L., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, J.H. Kroll, A.J. Kwan, D.C. McCabe, P.O. Wennberg, A. Sorooshian, S.M. Murphy, N.F. Dalleska, R.C. Flagan, and J.H. Seinfeld (2007a) Effect of $NO_x$ level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159-5174. https://doi.org/10.5194/acp-7-5159-2007
  93. Ng, N.L., P.S. Chhabra, A.W.H. Chan, J.D. Surratt, J.H. Kroll, A.J. Kwan, D.C. McCabe, P.O. Wennberg, A. Sorooshian, S.M. Murphy, N.F. Dalleska, R.C. Flagan, and J.H. Seinfeld (2007b) Effect of $NO_x$ level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes, Atmos. Chem. Phys., 7, 5159-5174. https://doi.org/10.5194/acp-7-5159-2007
  94. Ng, N.L., J.H. Kroll, A.W.H. Chan, P.S. Chhabra, R.C. Flagan, and J.H. Seinfeld (2007c) Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909-3922. https://doi.org/10.5194/acp-7-3909-2007
  95. Ng, N.L., A.J. Kwan, J.D. Surratt, A.W.H. Chan, P.S. Chhabra, A. Sorooshian, H.O.T. Pye, J.D. Crounse, P.O. Wennberg, R.C. Flagan, and J.H. Seinfeld (2008a) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals ($NO_3$), Atmos. Chem. Phys., 8, 4117-4140.
  96. Ng, N.L., A.J. Kwan, J.D. Surratt, A.W.H. Chan, P.S. Chhabra, A. Sorooshian, H.O.T. Pye, J.D. Crounse, P.O. Wennberg, R.C. Flagan, and J.H. Seinfeld (2008b) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals ($NO_3$), Atmos. Chem. Phys., 8, 4117-4140.
  97. Nishino, N., J. Arey, and R. Atkinson (2010) Formation yields of glyoxal and methylglyoxal from the gas-phase OH radical-initiated reactions of toluene, xylenes, and trimethylbenzenes as a function of $NO_2$ concentration, J. Phys. Chem. A, 114, 10140-10147. https://doi.org/10.1021/jp105112h
  98. Odum, J.R., T. Hoffmann, F. Bowman, D. Collins, R.C. Flagan, and J.H. Seinfeld (1996) Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585. https://doi.org/10.1021/es950943+
  99. Odum, J.R., T.P.W. Jungkamp, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld (1997) The atmospheric aerosol-forming potential of whole gasoline vapor, Science, 276, 96-99. https://doi.org/10.1126/science.276.5309.96
  100. Paulot, F., J.D. Crounse, H.G. Kjaergaard, A. Kurten, J.M. St Clair, J.H. Seinfeld, and P.O. Wennberg (2009) Unexpected epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730-733. https://doi.org/10.1126/science.1172910
  101. Paulsen, D., J. Dommen, M. Kalberer, A.S.H. Prevot, R. Richter, M. Sax, M. Steinbacher, E. Weingartner, and U. Baltensperger (2005) Secondary organic aerosol formation by irradiation of 1,3,5-trimethylbenzene-$NO_x$-$H_2O$ in a new reaction chamber for atmospheric chemistry and physics, Environ. Sci. Technol., 39, 2668-2678. https://doi.org/10.1021/es0489137
  102. Perri, M.J., Y.B. Lim, S.P. Seitzinger, and B.J. Turpin (2010) Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies, Atmos. Environ., 44, 2658-2664. https://doi.org/10.1016/j.atmosenv.2010.03.031
  103. Pitts, J.N. and E.R. Stephens (1978) The pioneers, J. Air Pollut. Control Assoc., 28, 516-517. https://doi.org/10.1080/00022470.1978.10470626
  104. Presto, A.A., K.E. Huff Hartz, and N.M. Donahue (2005) Secondary organic aerosol production from terpene ozonolysis. 1. Effect of UV radiation, Environ. Sci. Technol., 39, 7036-7045. https://doi.org/10.1021/es050174m
  105. Presto, A.A., M.A. Miracolo, N.M. Donahue, and A.L. Robinson (2010) Secondary organic aerosol formation from high-$NO_x$ photo-oxidation of low volatility precursors: n-alkanes, Environ. Sci. Technol., 44, 2029-2034. https://doi.org/10.1021/es903712r
  106. Roberts, P.T. and S.K. Friedlander (1976) Photochemical aerosol formation. Sulfur dioxide, 1-heptene, and $NO_x$ in ambient air, Environ. Sci. Technol., 10, 573-580. https://doi.org/10.1021/es60117a004
  107. Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259-1262. https://doi.org/10.1126/science.1133061
  108. Rohrer, F., B. Bohn, T. Brauers, D. Bruning, F.J. Johnen, A. Wahner, and J. Kleffmann (2005) Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 5, 2189-2201. https://doi.org/10.5194/acp-5-2189-2005
  109. Saathoff, H., O. Moehler, U. Schurath, S. Kamm, B. Dippel, and D. Mihelcic (2003) The AIDA soot aerosol characterisation campaign 1999, J. Aerosol Sci., 34, 1277-1296. https://doi.org/10.1016/S0021-8502(03)00363-X
  110. Sareen, N., A.G. Carlton, J.D. Surratt, A. Gold, B. Lee, F.D. Lopez-Hilfiker, C. Mohr, J.A. Thornton, Z. Zhang, Y.B. Lim, and B.J. Turpin (2016) Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign, Atmos. Chem. Phys. Discuss., 2016, 1-42.
  111. Seinfeld, J.H. and S.N. Pandis (1998) Atmospheric Chemistry and Physics : from Air Pollution to Climate Change. John Wiley, New York.
  112. Seinfeld, J.H. and J.F. Pankow (2003) Organic atmospheric particulate material, Annu. Rev. Phys. Chem., 54, 121-140. https://doi.org/10.1146/annurev.physchem.54.011002.103756
  113. Shrivastava, M.K., E.M. Lipsky, C.O. Stanier, and A.L. Robinson (2006) Modeling semivolatile organic aerosol mass emissions from combustion systems, Environ. Sci. Technol., 40, 2671-2677. https://doi.org/10.1021/es0522231
  114. Sorooshian, A., S.M. Murphy, S. Hersey, R. Bahreini, H. Jonsson, R.C. Flagan, and J.H. Seinfeld (2010) Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region, Geophys. Res. Lett., 37, 10.1029/2010GL044951.
  115. Spittler, M., I. Barnes, I. Bejan, K. Brockmann, T. Benter, and K. Wirtz (2006) Reactions of $NO_3$ radicals with limonene and ${\alpha}$-pinene: Product and SOA formation, Atmos. Environ. 40, 116-127. https://doi.org/10.1016/j.atmosenv.2005.09.093
  116. Surratt, J.D., A.W.H. Chan, N.C. Eddingsaas, M.N. Chan, C.L. Loza, A.J. Kwan, S.P. Hersey, R.C. Flagan, P.O. Wennberg, and J.H. Seinfeld (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene, Proc. Natl. Acad. Sci. USA, 107, 6640-6645. https://doi.org/10.1073/pnas.0911114107
  117. Taatjes, C.A., O. Welz, A.J. Eskola, J.D. Savee, A.M. Scheer, D.E. Shallcross, B. Rotavera, E.P.F. Lee, J.M. Dyke, D.K.W. Mok, D.L. Osborn, and C.J. Percival (2013) Direct measurements of conformer-dependent reactivity of the Criegee intermediate $CH_3CHOO$, Science, 340, 177-180. https://doi.org/10.1126/science.1234689
  118. Takekawa, H., H. Minoura, and S. Yamazaki (2003) Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons, Atmos. Environ., 37, 3413-3424. https://doi.org/10.1016/S1352-2310(03)00359-5
  119. Tan, Y., A.G. Carlton, S.P. Seitzinger, and B.J. Turpin (2010) SOA from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmos. Environ., 44, 5218-5226. https://doi.org/10.1016/j.atmosenv.2010.08.045
  120. Tan, Y., Y.B. Lim, K.E. Altieri, S.P. Seitzinger, and B.J. Turpin (2012) Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal, Atmos. Chem. Phys., 12, 801-813. https://doi.org/10.5194/acp-12-801-2012
  121. Tan, Y., M.J. Perri, S.P. Seitzinger, and B.J. Turpin (2009) Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol, Environ. Sci. Technol., 43, 8105-8112. https://doi.org/10.1021/es901742f
  122. Tobias, H.J., P.M. Kooiman, K.S. Docherty, and P.J. Ziemann (2000) Real-time chemical analysis of organic aerosols using a thermal desorption particle beam mass spectrometer, Aerosol Sci. Technol., 33, 170-190. https://doi.org/10.1080/027868200410912
  123. Tobias, H.J. and P.J. Ziemann (2000) Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and $O_3$ in the presence of alcohols and carboxylic acids, Environ. Sci. Technol., 34, 2105-2115. https://doi.org/10.1021/es9907156
  124. Tong, H., A.M. Arangio, P.S.J. Lakey, T. Berkemeier, F. Liu, C.J. Kampf, W.H. Brune, U. Poschl, and M. Shiraiwa (2016) Hydroxyl radicals from secondary organic aerosol decomposition in water, Atmos. Chem. Phys., 16, 1761-1771. https://doi.org/10.5194/acp-16-1761-2016
  125. Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34, 2983-3013. https://doi.org/10.1016/S1352-2310(99)00501-4
  126. Virtanen, A., J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirila, J. Leskinen, J.M. Makela, J.K. Holopainen, U. Poschl, M. Kulmala, D.R. Worsnop, and A. Laaksonen (2010) An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824-827. https://doi.org/10.1038/nature09455
  127. Volkamer, R., F.S. Martini, L.T. Molina, D. Salcedo, J.L. Jimenez, and M.J. Molina (2007) A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, Geophys. Res. Lett., 34, 10.1029/2007gl030752.
  128. Volkamer, R., P.J. Ziemann, and M.J. Molina (2009) Secondary Organic Aerosol Formation from Acetylene ($C_2H_2$): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase, Atmos. Chem. Phys., 9, 1907-1928.
  129. Wagner, R., C. Linke, K.-H. Naumann, M. Schnaiter, M. Vragel, M. Gangl, and H. Horvath (2009) A review of optical measurements at the aerosol and cloud chamber AIDA, J. Quant. Spectrosc. Radiat. Transfer, 110, 930-949. https://doi.org/10.1016/j.jqsrt.2009.01.026
  130. Wang, X., T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lu, J. Chen, S. Saunders, and J. Yu (2014) Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation, Atmos. Meas. Tech., 7, 301-313. https://doi.org/10.5194/amt-7-301-2014
  131. Wang, Y., H. Kim, and S.E. Paulson (2011) Hydrogen peroxide generation from ${\alpha}$-and ${\beta}$-pinene and toluene secondary organic aerosols, Atmos. Environ., 45, 3149-3156. https://doi.org/10.1016/j.atmosenv.2011.02.060
  132. Welz, O., J.D. Savee, D.L. Osborn, S.S. Vasu, C.J. Percival, D.E. Shallcross, and C.A. Taatjes (2012) Direct kinetic measurements of Criegee intermediate (C$H_2O$O) formed by reaction of CH2I with $O_2$, Science, 335, 204-207. https://doi.org/10.1126/science.1213229
  133. Wu, S., Z. Lu, J. Hao, Z. Zhao, J. Li, H. Takekawa, H. Minoura, and A. Yasuda (2007) Construction and characterization of an atmospheric simulation smog chamber, Adv. Atmos. Sci., 24, 250-258. https://doi.org/10.1007/s00376-007-0250-3
  134. Yu, J.Z., D.R. Cocker, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld (1999) Gas-phase ozone oxidation of monoterpenes: Gaseous and particulate products, J. Atmos. Chem., 34, 207-258. https://doi.org/10.1023/A:1006254930583
  135. Zhang, Q., J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe, I. Ulbrich, M.R. Alfarra, A. Takami, A.M. Middlebrook, Y.L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P.F. DeCarlo, D. Salcedo, T. Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and D.R. Worsnop (2007) Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenicallyinfluenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, 10.1029/2007gl029979.
  136. Zhou, X. and K. Mopper (1990) Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange, Environ. Sci. Technol., 24, 1864-1869. https://doi.org/10.1021/es00082a013
  137. Ziemann, P.J. (2002) Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of $O_3$ with cyclohexene and homologous compounds, J. Phys. Chem. A, 106, 4390-4402.

Cited by

  1. Filtration Characteristics of Paticulate Matter at Bag Filters Coated with PTFE Membrane During Off-Line Pulsing vol.39, pp.7, 2017, https://doi.org/10.4491/KSEE.2017.39.7.391