DOI QR코드

DOI QR Code

자세추적 실험을 통한 인공위성 편대비행 테스트베드의 예비 성능분석

Preliminary Performance Analysis of Satellite Formation Flying Testbed by Attitude Tracking Experiment

  • 투고 : 2015.11.20
  • 심사 : 2016.02.04
  • 발행 : 2016.05.01

초록

본 논문에서는 연세대학교 천문우주학과 우주비행제어연구실에서 개발 중인 인공위성 편대비행 테스트베드에 대한 예비 성능분석 결과를 제시하였다. 동역학 모델에 포함되지 않은 동특성과 측정 잡음 등에 의한 불확실성의 영향을 받는 반작용 휠의 응답 성능을 향상시키기 위하여 간단한 1차 선형시스템을 기준 모델로 하는 적응제어기를 설계하였다. 또한 자세 측정값에 잡음이 포함된 환경에서도 원활한 제어를 수행하기 위해 최소제곱법 기반의 실시간 파라미터 추정기법을 이용하여 관성모멘트를 추정하였다. 수치 시뮬레이션과 하드웨어 실험을 통해 설계된 모델 기준 적응제어기의 적합성과 향후 적용가능성을 검토하였고, 전 시간에 걸친 자세 추적오차가 $0.25^{\circ}$ 이내에 머무는 것을 확인하였다. 하지만 하드웨어 실험을 통해 드러난 제어 입력에 대한 데드존의 영향을 줄이기 위해서는 인공위성 시뮬레이터의 설계 변경이 필요하다고 판단된다.

This paper presents preliminary performance analysis of a satellite formation flying testbed, which is under development by Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University. A model reference adaptive controller (MRAC) with a first-order reference model is chosen to enhance the response of reaction wheel system which is subject to uncertainties caused by unmodelled dynamics and measurement noise. In addition, an on-line parameter estimation (OPE) technique based on the least square is combined to eliminate the effect of angular measurement noise by estimating the moment of inertia. Both numerical simulations and hardware experiments with MRAC support the effectiveness and applicability of the adaptive control scheme, which maintains the tracking error below $0.25^{\circ}$ for the entire time span. However, the high frequency control input generated in hardware experiment strongly suggests design modifications to reduce the effect of deadzone.

키워드

참고문헌

  1. Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C., "The Gravity Recovery and Climate Experiment: Mission Overview and Early Results", Geophysical Research Letters, Vol. 31, No. 9. 2004.
  2. Escoubet, C. P., Fehringer, M., and Goldstein, M., "The Cluster Mission", Annales Geophysicae, Vol. 19, 2001, pp. 1197-1200. https://doi.org/10.5194/angeo-19-1197-2001
  3. Oda, M., Kawano, L., Kibe, K., and Yamagata, F., "ETS-7, a Rendezvous Docking and Space Robot Technology Experiment Satellite Result of the Engineering Model Development Work", Proceedings of the 34th SICE Annual Conference, July, 1995, Sapporo, Japan, pp. 1627-1632.
  4. Burns, R., McLaughlin, C., Leitner, J., and Martin, M., "TechSat 21: Formation Design, Control, and Simulation", IEEE Aerospace conference proceedings, Vol. 7, 2000, pp. 19-25.
  5. Scharf, D. P., Hadaegh, F. Y., Keim, J. A., Benowitz, E. G., and Lawson, P. R., "Flight-Like Ground Demonstration of Precision Formation Flying Spacecraft", Proceedings of SPIE Techniques and Instrumentation for Detection of Exoplanets III, August, 2007, San Diego, CA, Vol. 6693.
  6. Schlotterer, M., and Theil, S., "Testbed for On-orbit Servicing and Formation Flying Dynamics Emulation", Proceedings of the AIAA Guidance, Navigation, and Control Conference, August, 2010, Toronto, Ontario, Canada.
  7. Tsiotras, P., "ASTROS: A 5DOF Experimental Facility for Research in Space Proximity Operations", Proceedings of 37th annual AAS guidance & control conference, January, 2014, Littleton, Colorado.
  8. Gallardo, D., Bevilacqua, R. and Rasmussen R. E., "Advances on a 6 Degrees of Freedom Testbed for Autonomous Satellite Operations", Proceedings of AIAA Guidance, Navigation, and Control Conference, August, 2011, Portland, Oregon.
  9. Xu, J., Bao, G., Yang, Q. J., and Li, J., "Design and Development of a 5-DOF Air-bearing Spacecraft Simulator", Proceedings of International Asia Conference on Informatics in Control, Automation and Robotics, 2009, pp.126-130.
  10. Eun, Y., Jung, S., Lee, E., Park, C., Park, S-Y., "Design of Ground-based Motion Simulator for Verifying Spacecraft Formation Flying Technology", Autumn Conference of The Korean Society for Aeronautical and Space Sciences, 2014, pp. 599-603.
  11. Choi, W-S., Cho, D-H., Song, H-R., Kim, J-H., Ko, S-J., Kim, H-D., "A 5-DOF Ground Testbed for Developing Rendezvous/Docking Algorithm of a Nano-satellite", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 43, No. 12, 2015, pp. 1124-1131. https://doi.org/10.5139/JKSAS.2015.43.12.1124
  12. Xiao, B., Hu, Q., Zhang, Y., "Adaptive Sliding Mode Fault Tolerant Attitude Tracking Control For Flexible Spacecraft under Actuator Saturation", IEEE Transactions on Control Systems Technology, Vol. 20, No. 5, 2012, pp. 1605-1612. https://doi.org/10.1109/TCST.2011.2169796
  13. Dando, A., "Spacecraft Attitude Maneuvers using Composite Adaptive Control with Invariant Sliding Manifold", Proceedings of the 47th IEEE Conference on Decision and Control, 2009
  14. Slotine, J-J. E., Li, W., Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.