DOI QR코드

DOI QR Code

인공위성의 동역학과 토크 외란을 고려한 큐브위성의 식 기간 자세추정

Attitude determination of cubesat during eclipse considering the satellite dynamics and torque disturbance

  • Choi, Sung Hyuk (Department of Mechanical and Aerospace Engineering / Automation and Systems Research Institute, Seoul National University) ;
  • Kang, Chul Woo (Department of Mechanical and Aerospace Engineering / Automation and Systems Research Institute, Seoul National University) ;
  • Park, Chan Gook (Department of Mechanical and Aerospace Engineering / Automation and Systems Research Institute, Seoul National University)
  • 투고 : 2015.09.07
  • 심사 : 2016.02.25
  • 발행 : 2016.04.01

초록

인공위성의 자세추정은 결정론적 방법과 재귀적인 방법으로 나눌 수 있는데, 이 중 재귀적인 방법으로는 칼만 필터를 사용하여 자세를 추정하는 알고리즘이 널리 사용되고 있다. 초소형 큐브 위성의 경우 많은 탑재체를 실을 수 없기에 최소한의 자세 센서만을 이용해야 하는 제한점이 있다. 미션에 따라 식 기간 및 태양 센서의 데이터 이용이 불가능할 때에도 인공위성의 자세추정은 계속 되어야 인공위성은 임무를 성공적으로 완수할 수 있게 된다. 본 연구에서는 일반적인 인공위성의 자세추정 기법을 기반으로 큐브위성의 동역학과 토크외란을 고려하여 알고리즘을 발전시켜 식 기간에서도 더욱 정확한 자세 추정이 가능하도록 하였다. 제안된 알고리즘은 시뮬레이션을 통해 기존의 자세추정 방법과 비교하여 그 성능을 검증하였다. 또한 위성체가 우주 환경에서 운용되면서 받을 수 있는 다양한 크기의 토크외란에 따른 자세추정 오차를 분석하였다.

Attitude determination of satellite is categorized by deterministic and recursive method. The recursive algorithm using Kalman filter is widely used. Cubesat has limitation for payload to minimize then only two attitude sensors are installed which are sun sensor and magnetometer. Sun sensor measurements are useless during eclipse, however cubesat keeps estimating attitude to complete the successful mission. In this paper, Attitude determination algorithm based on Kalman filter is developed by additional term which considering the dynamics for SNUSAT-1 with disturbance torque. Verification of attitude accuracy of the algorithm is conducted during eclipse. Attitude determination algorithm is simulated to compare the performance between typical method and proposed algorithm. In addition, Attitude errors are analysed with various magnitude of disturbance torque caused by space environment.

키워드

참고문헌

  1. Wahba, G., "A least squares estimate of satellite attitude," SIAM review, vol. 7, no. 3, 1965, pp.409.
  2. Shuster, M. D., and Oh, S. D., "Three-axis attitude determination from vector observations," Journal of Guidance, Control, and Dynamics, vol. 4, no. 1, 1981, pp.70-77. https://doi.org/10.2514/3.19717
  3. Bar-Itzhack, I. Y., and Oshman, Y., "Attitude determination from vector observations: quaternion estimation," Aerospace and Electronic Systems, IEEE Transactions on, no. 1, 1985, pp.128-136 https://doi.org/10.1109/TAES.1985.310546
  4. Lefferts, E. J., Markley, F. L., and Shuster, M. D., "Kalman filtering for spacecraft attitude estimation," Journal of Guidance, Control, and Dynamics, vol. 5, no. 5, 1982, pp.417-429. https://doi.org/10.2514/3.56190
  5. Crassidis, J. L., Markley, F. L., & Cheng, Y., "Survey of Nonlinear Attitude Estimation Methods," Journal of Guidance, Control, and Dynamics, vol. 30, no. 1, 2007, pp.12-28 https://doi.org/10.2514/1.22452
  6. Kang, C. W., Park, J. H., Jeung, I. S., and Park, C. G., "Development of a robust attitude determination system for a nano-satellite." Control, Automation and Systems (ICCAS), 2014 14th International Conference on. IEEE, 2014.
  7. Cordova-Alarcon, J. R., Mendoza-Barcenas, M. A., and Solis-Santome, A., Attitude Determination System Based on Vector Observations for Satellites Experiencing Sun-Eclipse Phases, Multibody Mechatronic Systems. Springer International Publishing, 2015, pp.75-85.
  8. Mimasu, Y., van der Ha, J. C., and Narumi, T., "Attitude Determination by Magnetometer and Gyros during Eclipse," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA, 2008.
  9. Titterton, D., and Weston, J. L., Strapdown inertial navigation technology. Vol. 17. IET, 2004, pp.309-334.
  10. Wertz, J. R., Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, Dordrecht, Netherlands, 1978, pp.113-152.
  11. Hughes, P. C., Spacecraft attitude dynamics, Courier Corporation, 2012, pp.232-280.
  12. Inamori, T., Sako, N., and Nakasuka, S., "Compensation of time-variable magnetic moments for a precise attitude control in nano-and micro-satellite missions," Advances in Space Research, vol.48, no.3, 2011, pp.432-440. https://doi.org/10.1016/j.asr.2011.03.036