References
- Irwin, G. R., 1957, "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," Trans. ASME, J. Appl. Mech., Vol. 24, pp.361-364.
- Sih, G. C. and Liebowitz, H., 1968, "Mathematical Theories of Brittle Fracture. In Fracture: An Advanced Treatise, Edited by H. Liebowitz," Academic Press, New York
- Lee, K. H., Lee. Y. J. and Cho, S. B., 2009, "Characteristics of a Transiently Propagating Crack in Functionally Graded Materials," J. of Mech. Sci. and Tech.,Vol. 23, pp. 1306-1322. https://doi.org/10.1007/s12206-008-1004-6
- Lee, K. H., 2009, "Analysis of a Transiently Propagating Crack in Functionally Graded Materials Under Mode I and II," Inter. J. of Engng. Sci., Vol. 47, pp. 852-865. https://doi.org/10.1016/j.ijengsci.2009.05.004
- Lee, K. H., 2014, "Influence of Density Variation on the Arbitrarily Propagating Crack Tip Fields in Funactioally Graded Materials," J. of Mech. Sci. and Tech., Vol. 26, No. 6, pp. 2129-2140.
- Lee, K. H., 2016, "Analysis of a Propagating Crack Tip in Orthotropic Functionally Graded Materials," Compo. part B, Vol, 84, pp. 83-97. https://doi.org/10.1016/j.compositesb.2015.08.068
- Bowie, O.L. and Freese, C.E., 1972, "Central Crack in Plane Orthotropic Rectangular Sheet," Int. J. Fract. Vol. 8, No. 1, pp. 49-58. https://doi.org/10.1007/BF00185197
- Berto, F. and Barati, E., 2011, "Fracture Assessment of U-notches Under Three Point Bending by Means of Local Energy Density," Materials and Design, Vol. 32(2), pp. 822-830. https://doi.org/10.1016/j.matdes.2010.07.017
- Yao W., Zhang, Z., Hu, X., 2014, "A Singular Element for Reissner Plate Bending Problem with V-shaped Notches," Theo. and Applied Fract. Mechan., Vol. 74, pp. 143-156. https://doi.org/10.1016/j.tafmec.2014.09.003
- Afshar, A., Daneshyar, A. and Mohammadi, S., 2015, "XFEM Analysis of Fiber Bridging in Mixed-Mode Crack Propagation in Composites," Composite Structures, Vol. 125, pp. 314-327. https://doi.org/10.1016/j.compstruct.2015.02.002
- Ashokan, K. and Ramesh, K., 2009, "An Adaptive Scanning Scheme for Effective Whole Field Stress Separation in Digital Photoelasticity," Optics & Laser Tech., Vol. 41, No. 1, pp. 25-31. https://doi.org/10.1016/j.optlastec.2008.04.007
- Umezaki, E. and Terauchi, S., 2002, "Extraction of Isotropic Points Using Simulated Isoclinics Obtained by Photoelasticity-Assisted Finite Element Analysis," Optics and Lasers in Engng., Vol. 38, No. 1, pp. 71-85. https://doi.org/10.1016/S0143-8166(01)00158-0
- Timilsina, S., Lee, K. H., Kwon, Y. N. and Kim, J. S., 2015, "Optical Evaluation of In Situ Crack Propagation by Using Mechanoluminescence of SrAl2O4 : Eu2+, Dy3+," J. Am. Ceram. Soc., Vol. 98, No. 7, 2197-2204. https://doi.org/10.1111/jace.13566
- Robert, S. and Dariusz, B. 2015, "Strain Analysis at Notch Root in Laser Welded Samples Using Material Properties of Individual Weld Zones," Inter. J. of Fatigue, Vol. 74, pp. 71-80. https://doi.org/10.1016/j.ijfatigue.2014.12.004
- Leven, M. M. and Frocht, M. M., 1953, "Stress Concentration Factors for a Single Notch in a Flat Plate in Pure and Central Bending," Proc. SESA, Vol. 11, No. 2, p. 179.
- Troyani, N., Hernandez, S. I., Villarroel, G., Pollonais, Y. and Gomes, C., 2004, "Theoretical Stress Concentration Factors for Short Flat Bars with Opposite U-shaped Notches Subjected to In-plane Bending," Inter. J. of Fatigue, Vol. 26, No. 12, pp. 1303-1310. https://doi.org/10.1016/j.ijfatigue.2004.04.007
- Tlilan, H. M, Sakai, N. and Majima, T., 2006, "Effect of Notch Depth on Strain-concentration Factor of Rectangular Bars with a Single-edge Notch Under Pure Bending," Inter. J. Solids And Struct. Vol. 43, No. 3, pp. 459-474. https://doi.org/10.1016/j.ijsolstr.2005.03.069
- Barati, E. and Mohammadi, A., 2013, "A New Practical Equation for Evaluation of Strain-energy Density Distribution and J-integral in Plates with Blunt V-notches Under Bending Loading," Materials and Design, Vol. 46, pp. 873-880. https://doi.org/10.1016/j.matdes.2012.11.019
- Yazdanmehr, A. and Soltani, N., 2014, "Evaluation of Stress Intensity Factors of Rounded V and U Notches Under Mixed Mode Loading, using the Experimental Method of Caustics," Theo. and Applied Fract. Mech., Vol. 74, pp. 79-85. https://doi.org/10.1016/j.tafmec.2014.07.011
- Srawley, J. E., 1976, "Wide Range Stress Intensity Factor Expressions for ASTM E399 Standard Fracture Tougfness Specimens," Int. J. Fract. Mech., 12, pp. 475-476.
- Woo, C. W, Cheung, Y. K, Chen, Y. Z. and Wang, Y. H., 1988, "A Simple Model for the contact Problem of a Finite Cracked Plate in Bending," Engng. Fract. Mech., Vol. 29, No. 2, pp. 227-231. https://doi.org/10.1016/0013-7944(88)90049-5
- Iida, J., Hasebe, N. and Nakamura, T., 1990, "Approximate Expressions for SIF of Crack Initiating from Notch for Thin Plate Bending and Plane Problems," Engng Fract. Mech., Vol. 36, No. 5, pp. 819-825. https://doi.org/10.1016/0013-7944(90)90410-I
- Lim, I. L., Johnston, I. W. and Choi, S. K., 1993, "Stress Intensity Factors for Semi-circular Specimens Under Three-point Bending," Enging. Fract. Mech., Vol. 44, No. 3, pp. 363-382. https://doi.org/10.1016/0013-7944(93)90030-V
- Meshii, T. and Watanabe, K., 1998, "Closed-form Stress Intensity Factor for an Arbitrarily Located Inner Circumferential Surface Crack in a Cylinder Subjected to Axisymmetric Bending Loads," Engng. Fract. Mech., Vol. 59 No. 5, pp. 589-597. https://doi.org/10.1016/S0013-7944(97)00172-0
- Alatawi, I. A. and Trevelyan, J., 2015, "A Direct Evaluation of Stress Intensity Factors Using the Extended Dual Boundary Element Method," Engng. Analy. with Boundary Elements, Vol. 52, pp. 56-63. https://doi.org/10.1016/j.enganabound.2014.11.022
- Seo, B. S., 2015, "Stress Analysis on Notch and Crack Tip of the Beam," Master Thesis, Kyungpook National University.
- Broek, D., 1982, "Elementary Engineering Fracture Mechanics," Third Revised ed., Martinus Nijhoff Pub.
- Dally, J. W. and Riley W. F., 1978, "Experimental Stress Analysis" McGraw Hill.